Lunar Laser Ranging — A Comprehensive Probe of the Post-Newtonian Long Range Interaction

  • Kenneth Nordtvedt
Conference paper
Part of the Lecture Notes in Physics book series (LNP, volume 562)


30 years of lunar laser ranging (LLR) data has been modeled and fit with several millimeters precision using the general relativistic equations of motion for solar system dynamics. This produces several key tests of that tensor theory of gravity and strongly constrains presence of any supplementary interactions. Earth and Moon fall toward the Sun at rates equal to a couple parts in 1013, confirming both the universal coupling of gravity to matter's stress-energy tensor, and gravity's specific non-linear coupling to itself. The expected deSitter precession (with respect to the distant ‘fixed’ stars) of the local inertial frame moving with the Earth-Moon system is confirmed to 3.5 parts in 103 precision, and Newton’s constant indeed shows no cosmological time variation at the few parts in 1012 per year level. All the types of post-Newtonian terms in the N-body equation of motion—motional, gravito-magnetic, non-linear, inductive, etc.—contribute to the measured details of the lunar orbit, so LLR achieves ‘near- completeness’ as a gravity experiment and probe. The precision of these measurements, especially those connected with lunar orbit frequencies and their rates of change, should further improve as LLR observations continue into the future.


Body Equation Lunar Orbit Newtonian Gravity Lunar Laser Range Inductive Force 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    K. Nordtvedt: Phys. Rev. 169, 1017 (1968).CrossRefADSGoogle Scholar
  2. 2.
    K. Nordtvedt: Phys. Rev. 170, 1186 (1968).CrossRefADSGoogle Scholar
  3. 3.
    W. deSitter: Mon. Not. R. Astron. Soc. 77, 155 (1916).ADSGoogle Scholar
  4. 4.
    K. Nordtvedt: Phys. Rev. D 7, 2347 (1973).ADSGoogle Scholar
  5. 5.
    I.I. Shapiro et al.: Phys. Rev. Lett. 61, 2643 (1988).CrossRefADSGoogle Scholar
  6. 6.
    B. Bertotti, I. Ciufolini, and P.L. Bender: Phys. Rev. Lett. 58, 1062(1987).CrossRefADSMathSciNetGoogle Scholar
  7. 7.
    J.G. Williams, X.X. Newhall, and J.O. Dickey: Phys. Rev. D 53, 6730 (1996).ADSGoogle Scholar
  8. 8.
    K. Nordtvedt: Icarus 114. 51 (1995).CrossRefADSGoogle Scholar
  9. 9.
    T. Damour and D. Vokrouhlicky: Phys. Rev. D 53, 4177 (1996).ADSGoogle Scholar
  10. 10.
    C. Will and K. Nordtvedt: Astrophys. J. 177, 757 (1972).CrossRefADSMathSciNetGoogle Scholar
  11. 11.
    K. Nordtvedt: Class. Quant. Grav. 13, 1317 (1996).zbMATHCrossRefADSGoogle Scholar
  12. 12.
    J. Müller, K. Nordtvedt, and D. Vokrouhlicky: Phys. Rev. D 54, 5927 (1996).CrossRefGoogle Scholar
  13. 13.
    J. Müller and K. Nordtvedt: Phys. Rev. D 58, 2001 (1998).CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2001

Authors and Affiliations

  • Kenneth Nordtvedt
    • 1
  1. 1.Northwest AnalysisBozemanUSA

Personalised recommendations