Advertisement

Testing Relativistic Gravityand Measuring Solar System Parameters via Optical Space Missions

  • Wei-Tou Ni
Conference paper
  • 720 Downloads
Part of the Lecture Notes in Physics book series (LNP, volume 562)

Abstract

For last thirty years, great advances in the testing of relativistic gravity have come from interplanetary radio ranging and lunar laser ranging. With optical mission concepts in the interplanetary space, testing relativistic gravity can be improved by 3 – 6 orders of magnitude and many solar-system parameters can be measured either for the first time or more precisely. After reviewing briefly dedicated optical mission concepts — SORT, IPLR and ASTROD together with other optical mission or mission concepts which have important implications on testing relativity and astrodynamics — HIPPARCOS, GAIA and LISA, we concentrate on a specific mission concept — ASTROD to discuss various mission goals and capabilities in detail. ASTROD is an optical interferometry mission concept. Optical interferometry missions hold great promises for the testing of relativistic gravity and for the measuring of solar-system parameters. We discuss the determination of relativistic parameters γ, β and the solar quadrupole moment parameter J 2, the measurements of solar Lense-Thirring effect together with the application of laser astrodynamics to solar system studies — solar angular momentum, solar g-modes, asteroid masses, etc.

Keywords

Gravitational Wave Proof Mass Gravitational Wave Detection Solar Oscillation Relativistic Gravity 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    T. Melliti, F. Fridelance, and E. Samain: “Study of gravitational theories and of the solar quadrupole moment with the SORT experiment: Solar Orbit Relativity Test,” in preparation for Astronomy and Astrophysics; and references therein.Google Scholar
  2. 2.
    K. Nordtvedt and D. Smith: private communication.Google Scholar
  3. 3.
    W.-T. Ni, J.-T. Shy, S.-M. Tseng, X. Xu, H.-C. Yeh, W.-Y. Hsu, W.-L. Liu, S.-D. Tzeng, P. Fridelance, E. Samain, A. M. Wu: ”Progress in Mission Concept Study and Laboratory Development for the ASTROD-Astrodynamical Space Test of Relativity using Optical Devices,” in the Proceedings of SPIE, Vol. 3316: Small Spacecraft, Space Environments, and Instrumentation Technologies, pp. 105–16,ed. F. A. Allahdadi, E. K. Casani, and T. D. Maclay, 1997; and references therein.Google Scholar
  4. 4.
    A. Bec-Borsenberger, J. Christensen-Dalsgaard, M. Cruise, A. Di Virgilio, D. Gough, M. Keiser, A. Kosovichev, C. Lämmerzahl, J. Luo, W.-T. Ni, A. Peters, E. Samain, P. H. Scherrer, J.-T. Shy, P. Touboul, K. Tsubono, A.-M. Wu, H.-C. Yeh: “Astrodynamical Space Test of Relativity using Optical Devices ASTROD-A Proposal Submitted to ESA in Response to Call for Mission Proposals for Two Flexi-Mission F2/F3,” January 31, 2000.Google Scholar
  5. 5.
    W.-T. Ni: Laser Astrodynamical Mission: Concepts, Proposals and Possibilities, Plenary talk given in the Second William Fairbank Conference on Relativistic Gravitational Experiments in Space, 13–16 December, 1993, Hong Kong.Google Scholar
  6. 6.
    W.-T. Ni, A.-M. Wu, and J.-T. Shy: A mission concept to measure second-order relativistic effect, solar angular momentum and low-frequency gravitational waves, in Proceedings of the Seventh Marcel Grossmann Meeting on General Relativity (Stanford, California, July 23-30, 1994), (World Scientific, Singapore 1996), p. 1519.Google Scholar
  7. 7.
    W.-T. Ni, M.C.W. Sandford, C. Veillet, A.-M. Wu, P. Fridelance, E. Samain, G. Spalding, and X. Xu: Astrodynamical space test of relativity using optical devices, presented to 31st COSPAR Scientific Assembly (Birmingham, 14-21, July, 1996)(National Tsing Hua University Preprint GP-074, July, 1996).Google Scholar
  8. 8.
    W.-T. Ni: ASTROD and gravitational waves, in Gravitational Wave Detection, edited. by K. Tsubono, M.-K. Fujimoto and K. Kuroda, Universal Academy Press, Tokyo, Japan, p. 117 (1997).Google Scholar
  9. 9.
    W.-T. Ni: ASTROD mission concept and measurement of the temporal variation of the gravitation constant, pp. 309–320 in Proceedings of the Pacific Conference on Gravitation and Cosmology, February 1–6, 1996, Seoul, Korea, ed. Y. M. Cho, C. H. Lee and S.-W. Kim (World Scientific, Singapore 1996).Google Scholar
  10. 10.
    Z.-Y. Su, et al.: Asteroid perturbations and possible determination of asteroid masses through the ASTROD space mission, Planetary and Space Science 47, 339 (1999).CrossRefADSGoogle Scholar
  11. 11.
    M. Frœschlé, F. Mignard and F. Arenou: in Proceedings of the ESA Symposium Hipparcos-Venice’97, 13-16 May, Venice, Italy, ESA SP-402(July 1997), p. 49.Google Scholar
  12. 12.
    L. Lindegren and M. A. C. Perryman: The GAIA Concept, in Proceedings of a Joint RGO-ESA Workshop on Future Possibilities for Astrometry in Space, Cambridge, UK, 19-21 June 1995 (ESA SP-379, September 1995), p. 23.Google Scholar
  13. 14.
    W.-T. Ni: Equivalence Principle, Lorentz Invariance and the Microscopic Origin of Gravity, invited talk given at the Inauguration Conference of the Asia Pacific Center for Theoretical Physics, June 4-10, 1996, Seoul, Korea.Google Scholar
  14. 15.
    ACES (Atomic Clock Ensemble onboard of the International Space Station), Mission Duration: beginning 2002-2005, Neuchatel Workshop, 12 June 1998.Google Scholar
  15. 16.
    J.W. Armstrong, F.B. Estabrook, and M. Tinto: “Time-delay interferometry for space-based gravitational wave searches”, Phys. Rev. D, in press; and references therein.Google Scholar
  16. 17.
    A.-M. Wu, X. Xu and W.-T Ni: Int. J. Mod. Phys. D 9, 201 (2000).ADSGoogle Scholar
  17. 18.
    D.-W. Chiou, and W.-T. Ni: “ASTROD Orbit Simulation and Accuracy of Relativistic Parameter Determination”, Advances in Space Research 25, 1259 (2000).CrossRefADSGoogle Scholar
  18. 19.
    V.A. Brumberg: Essential Relativistic Celestial Mechanics (Adam Hilger, Bristol 1991); and references therein.zbMATHGoogle Scholar
  19. 20.
    E. Samain, J. F. Mangin, C. Veillet, J. M. Torre, P. Fridelance, J. E. Chabaudie, D. Féraudy, M. Glentzlin, J. Pham Van, M. Furia, A. Journet, G. Vigouroux: “Millimetric Lunar Laser Ranging at OCA (Observatoire de la Côte d’Azur)”, Astron. Astrophys. Suppl. 130, 235 (1998).CrossRefADSGoogle Scholar
  20. 21.
    G. J. Biermann: Factorization Methods for Discrete Sequential Estimation, (Academic Press, New York 1997); and references therein.Google Scholar
  21. 22.
    D.-W. Chiou, and W.-T. Ni: “Orbit simulation for the determination of relativistic and solar-system parameters for the ASTROD space mission,” to be presented in COSPAR 2000 (Warsaw).Google Scholar
  22. 23.
    J. D. Anderson et al.: Phys. Rev. Lett. 81, 2825 (1998).Google Scholar
  23. 24.
    X. Xu and W.-T. Ni: “Solar angular momentum calculation,” National Science Council report (1997).Google Scholar
  24. 25.
    L. Paternó, S. Sofia, and M.P. Di Mauro: Astronomy and Astrophysics 314, 940 (1996).ADSGoogle Scholar
  25. 26.
    Y. Elsworth et al.: “Slow rotation of the sun’s interior,” Nature 376, 669 (1995).CrossRefADSGoogle Scholar
  26. 27.
    M.J. Thompson, J. Toomre, and E.R. Anderson et al.: Science 727, 1300 (1996).CrossRefADSGoogle Scholar
  27. 28.
    J. Schou, S. Tomczyk, and M.J. Thompson: “A measurement of the rotation rate in the deep solar interior”, in Proceedings of Fourth SOHO Workshop: Helioseismology, Pacific Grove, California, 2-6 April 1995 (ESA SP-376, June 1995).Google Scholar
  28. 29.
    D. Hills, P.L. Bender, and R.F. Webbink: Astrophysics Journal 360, 75 (1990).CrossRefADSGoogle Scholar
  29. 30.
    T.R. Marsh: Mon. Not. R. Astron. Soc. 275, L1 (1995).ADSGoogle Scholar
  30. 31.
    T.R. Marsh, V.S. Dhilon, and S.R. Duck: Mon. Not. R. Astron. Sec. 275, 828 (1995).ADSGoogle Scholar
  31. 32.
    B.F. Schutz: in G. Pizzella and E. Coccia (eds.): Processdings of the First Amaldi Conference on Gravitational Wave Experiments(World Scientific, Singapore 1995).Google Scholar
  32. 33.
    D. Gough: Nature 376, 120 (1996).CrossRefADSGoogle Scholar
  33. 34.
    C. Cutler, and L. Lindblom: Phys. Rev. D 54, 1287 (1996).ADSGoogle Scholar
  34. 35.
    W.-T. Ni and X. Xu: Separation of the gravitational-wave signals and the solar oscillation signals, in S. Meshkov (ed.): Proceedings of Third Amaldi Conference on Gravitational Waves (AIP 2000), in press.Google Scholar
  35. 36.
    P. Kumar, and E.J. Quataert: The Astrophys. J. 458, L83 (1996).ADSCrossRefGoogle Scholar
  36. 37.
    J.W. Harvey et al.: Science 272, 1284 (1996).CrossRefADSGoogle Scholar
  37. 38.
    C. Veillet: “TROLL, a proposal for the ESA M3 mission,” 1993.Google Scholar
  38. 39.
    G. Giamepieri, R.W. Hellings, M. Tinto, and J.E. Faller: Opt. Commun. 123, 669 (1996).CrossRefADSGoogle Scholar
  39. 40.
    R. Hellings, G. Giamepieri, L. Maleki, M. Tinto, K. Danzmann, J. Hough, and D. Robertson: Opi. Commun. 124, 313 (1996).CrossRefADSGoogle Scholar
  40. 41.
    B. Bertotti and D. Giampieri: Class. Quantum Grav. 9, 777 (1992).CrossRefADSMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2001

Authors and Affiliations

  • Wei-Tou Ni
    • 1
  1. 1.Center for Gravitation and CosmologyDepartment of Physics, National Tsing Hua UniversityHsinchuRepublic of China

Personalised recommendations