Advertisement

Relativistic Phase Shifts for Dirac Particles Interacting with Weak Gravitational Fields in Matter—Wave Interferometers

  • Christian J. Bordé
  • Jean-Claude Houard
  • Alain Karasiewicz
Conference paper
Part of the Lecture Notes in Physics book series (LNP, volume 562)

Abstract

We present a second-quantized field theory of massive spin one-half particles or antiparticles in the presence of a weak gravitational field treated as a spin two external field in a flat Minkowski background. We solve the difficulties which arise from the derivative coupling and we are able to introduce an interaction picture. We derive expressions for the scattering amplitude and for the outgoing spinor to first-order. In several appendices, the link with the canonical approach in General Relativity is established and a generalized stationary phase method is used to calculate the outgoing spinor. We show how our expressions can be used to calculate and discuss phase shifts in the context of matter-wave interferometry (especially atom or antiatom interferometry). In this way, many effects are introduced in a unified relativistic framework, including spin-gravitation terms: gravitational red shift, Thomas precession, Sagnac effect, spin-rotation effect, orbital and spin Lense-Thirring effects, de Sitter geodetic precession and finally the effect of gravitational waves. A new analogy with the electromagnetic interaction is pointed out.

Keywords

Gravitational Wave Lagrangian Density Laser Spectroscopy Dirac Particle Interaction Picture 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    P. Laurent et al.: Cold atom clocks on earth and in space, in R. Blatt, J. Eschner, D. Leibfried and F. Schmidt-Kaler (eds.): Laser Spectroscopy, Proceedings of the 14th International Conference on Laser Spectroscopy (World Scientific, Singapore 1999), p. 41.Google Scholar
  2. 2.
    P. Berman (ed.): Atom Interferometry (Academic Press 1997).Google Scholar
  3. 3.
    Ch.J. Bordé: Atomic interferometry and laser spectroscopy, in: Laser Spectroscopy X (World Scientific, Singapore 1991), p. 239.Google Scholar
  4. 4.
    U. Sterr et al.: Atom interferometry based on separated light fields, in [2] and Appl. Phys. B 54, 341 (1992).ADSGoogle Scholar
  5. 5.
    F. Riehle, Th. Kisters, A. Witte, J. Helmcke and Ch.J. Bordé: Optical Ramsey Spectroscopy in a Rotating Frame: Sagnac Effect in a Matter-Wave Interferometer, Phys. Rev. Lett. 67, 177–180 (1991).CrossRefADSGoogle Scholar
  6. 6.
    B.C. Young, M. Kasevich and S. Chu: Precision atom interferometry with light pulses, in [2] and references therein.Google Scholar
  7. 7.
    Ch.J. Bordé: Atomic interferometry with internal state labelling, Phys. Lett. A 140, 10 (1989).ADSGoogle Scholar
  8. 8.
    Ch.J. Bordé et al.: Optical Ramsey fringes with travelling waves, Phys. Rev. A 30, 1836 (1984).ADSGoogle Scholar
  9. 9.
    Ch.J. Bordé et al.: Molecular Interferometry Experiments, Phys. Lett. A 188, 187 (1994).ADSGoogle Scholar
  10. 10.
    Ch.J. Bordé: Matter-wave interferometers: a synthetic approach, in [2].Google Scholar
  11. 11.
    For an early treatment of a gravitational wave detector using an atom interferometric gradiometer see: Ch.J. Bordé, J. Sharma, Ph. Tourrenc and Th. Damour: Theoretical approaches to laser spectroscopy in the presence of gravitational fields, J. Physique Lettres 44, L–983 (1983).Google Scholar
  12. 12.
    Ch.J. Bordé, A. Karasiewicz and Ph. Tourrenc: General relativistic framework for atomic interferometry, Int. J. of Mod. Phys. D 3, 157 (1994).ADSGoogle Scholar
  13. 13.
    F.W. Hehl and Wei-Tou Ni: Inertial effects of a Dirac particle, Phys. Rev. D 42, 2045 (1990).ADSGoogle Scholar
  14. 14.
    S. Weinberg: Gravitation and Cosmology (John Wiley and Sons, New York 1972).Google Scholar
  15. 15.
    S.N. Gupta: Quantization of Einstein’s gravitational field: linear approximation, Proc. Phys. Soc. A 65, 161 (1952).Google Scholar
  16. 16.
    S.N. Gupta: Quantization of Einstein’s gravitational field: general treatment, Proc. Phys. Soc. A 65, 608 (1952).Google Scholar
  17. 17.
    J.D. Bjorken and S.D. Drell: Relativistic Quantum Mechanics, (McGraw-Hill, New York 1964).Google Scholar
  18. 18.
    J.D. Bjorken and S.D. Drell: Relativistic Quantum Fields (McGraw-Hill, New York 1965).zbMATHGoogle Scholar
  19. 19.
    R.P. Feynman, F.B. Morinigo and W.G. Wagner: Feynman Lectures on Gravitation, edited by B. Hatfield (Addison-Wesley, Reading MA 1995).Google Scholar
  20. 20.
    L.D. Landau and E.M. Lifschitz: The Classical Theory of Fields (Addison-Wesley, Reading MA 1951).zbMATHGoogle Scholar
  21. 21.
    S.S. Schweber: An Introduction to Relativistic Quantum Field Theory (Harper and Row, New York 1961).Google Scholar
  22. 22.
    Ch.J. Bordé: Quantum theory of clocks and of gravitational sensors using atom interferometry, in R. Blatt, J. Eschner, D. Leibfried and F. Schmidt-Kaler (eds.): Laser Spectroscopy, Proceedings of the 14th International Conference on Laser Spectroscopy, (World Scientific, Singapore 1999), p. 160.Google Scholar
  23. 23.
    B. Linet et P. Tourrenc: Changement de phase dans un champ de gravitation: possibilité de détection interférentielle, Can. J. Phys. 54, 1129 (1976).zbMATHADSMathSciNetGoogle Scholar
  24. 24.
    M. Born and E. Wolf: Principles of Optics, third edition (Pergamon Press, Oxford 1964).Google Scholar
  25. 25.
    L. Hörmander: The Analysis of Linear Partial Differential Operators, Vol. 1, (Springer-Verlag, Berlin 1983).Google Scholar
  26. 26.
    V.B. Berestetskii, E.M. Lifschitz and L.P. Pitaevskii: Relativistic Quantum Theory (Pergamon Press, Oxford 1971).Google Scholar
  27. 27.
    V. Bargmann and E.P. Wigner: Group theoretical discussion of relativistic wave equations, Proc. Nat. Acad. Sci. (USA) 34, 211 (1948).Google Scholar
  28. 28.
    L. de Broglie: Théorie Générale des particules à spin (Méthode de fusion) (Gauthier-Villars, Paris 1943).Google Scholar
  29. 29.
    E. Durand: 16-component theory of the spin-1 particle and its generalization to arbitrary spin, Phys. Rev. D 11, 3405 (1975).ADSGoogle Scholar
  30. 30.
    L.H. Thomas: The Kinematics of an Electron with an Axis, Phil. Mag. 3, 1 (1927).Google Scholar
  31. 31.
    J.K. Lubanski: Sur la théorie des particules élémentaires de spin quelconque.I., Physica 9, 310 (1942).CrossRefADSMathSciNetGoogle Scholar
  32. 32.
    J.M. Jauch and F. Rohrlich: The Theory of Photons and Electrons (Addison-Wesley, Cambridge MA 1955).Google Scholar
  33. 33.
    Ch.J. Bordé: A comparison of electromagnetic and weak gravitational interactions in matter-wave interferometry, to be published.Google Scholar
  34. 34.
    I.N. Bronshtein and K.A. Semendyayev: Handbook of Mathematics (Springer, Berlin 1997), p. 770.zbMATHGoogle Scholar
  35. 35.
    A. Peters, K. Y. Chung and S. Chu: A measurement of gravitational acceleration by dropping atoms, Nature 400, 849 (1999).CrossRefADSGoogle Scholar
  36. 36.
    A. Landragin, T. L. Gustavson and M. A. Kasevich: Precision atomic gyroscope, in R. Blatt, J. Eschner, D. Leibfried and F. Schmidt-Kaler (eds.): Laser Spectroscopy, Proceedings of the 14th International Conference on Laser Spectroscopy (World Scientific, Singapore 1999), p. 170.Google Scholar
  37. 37.
    Ch.J. Bordé: Propagation of Laser beams and of atomic systems, in J. Dalibard et al. (eds.): Fundamental Systems in Quantum Optics,(Elsevier 1991), p. 287.Google Scholar
  38. 38.
    Ch.J. Bordé and C. Lämmerzahl: Atom beam interferometry as two-level particle scattering by a periodic potential, Ann. Phys. (Leipzig) 8, 83 (1999).CrossRefGoogle Scholar
  39. 39.
    C. Lämmerzahl and Ch.J. Bordé: Rabi oscillations in gravitational fields: exact solution, Phys. Lett. A 203, 59 (1995).ADSGoogle Scholar
  40. 40.
    C. Lämmerzahl and Ch.J. Bordé: Atom interferometry in gravitational fields: influence of gravitation on the beam splitter, Gen. Rel. Grav., 31, 635 (1999).zbMATHCrossRefADSGoogle Scholar
  41. 41.
    J. Audretsch and K.-P. Marzlin: Atom interferometry with arbitrary laser configurations: exact phase shift for potentials including inertia and gravitation, J. Phys. II (France) 4, 2073 (1994).CrossRefGoogle Scholar
  42. 42.
    J. Audretsch and K.-P. Marzlin: Ramsey fringes in atomic interferometry: measurability of the influence of space-time curvature, Phys. Rev. A 50, 2080 (1994).ADSGoogle Scholar
  43. 43.
    C. Lämmerzahl: Relativistic treatment of Raman light-pulse atom beam interferometer with applications in gravity theory, J. Phys. II (France) 4, 2089 (1994).CrossRefGoogle Scholar
  44. 44.
    P. Wolf and Ph. Tourrenc: Gravimetry using atom interferometers: some systematic effects, Phys. Lett. A 251, 241 (1999).ADSGoogle Scholar
  45. 45.
    B.S. DeWitt: Superconductors and gravitational drag, Phys. Rev. Lett. 16, 1092 (1966)CrossRefADSGoogle Scholar
  46. 46.
    G. Papini: Particle wave functions in weak gravitational fields, Nuovo Cimento 52B, 136 (1967).ADSGoogle Scholar
  47. 47.
    T.J. Phillips: Measuring the gravitational acceleration of antimatter with an antihydrogen interferometer, Hyperfine Interactions 100, 163 (1996).CrossRefADSGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2001

Authors and Affiliations

  • Christian J. Bordé
    • 1
    • 2
    • 3
  • Jean-Claude Houard
    • 1
  • Alain Karasiewicz
    • 1
  1. 1.Laboratoire de Gravitation et Cosmologie RelativistesUniversité Pierre et Marie CurieCedex 05, ParisFrance
  2. 2.Laboratoire de Physique des Lasers, UMR 7538 CNRSUniversité Paris-NordVilletaneuseFrance
  3. 3.Institut für QuantenoptikUniversität HannoverHannoverGermany

Personalised recommendations