Advertisement

Spin in Gravity

  • Wei-Tou Ni
Conference paper
Part of the Lecture Notes in Physics book series (LNP, volume 562)

Abstract

In these two talks, we report on the efforts to probe the role of spin and polarization in gravitation. After reviewing the motivation and historical background, we focus the talks on the experimental searches. These experimental searches are mainly of two categories: (i) laboratory searches (torsion-balance experiments, magnetic resonance experiments, SQUID experiments), and (ii) astrophysical and cosmological searches (pulsar observations, radio-galaxy observations, gamma-ray observations). We first discuss experimental searches for photon polarization coupling and then discuss experimental searches for electron spin-coupling. In the discussion of photon polarization coupling, we review the astrophysical and cosmological electromagnetic propagation observations. In the discussion of electron spin-coupling, we review the weak equivalence principle experiments, the finite-range spin coupling experiments, the spin-spin coupling experiments and the cosmic-spin coupling experiments. We discuss two recent laboratory experiments, a SQUID experiment and a torsion-balance experiment in detail to illustrate the experimental techniques. The ultimate searches for the role of spin in gravitation is to measure the gyrogravitational ratio. A discussion of the strategies to perform such experiments conclude these two talks.

Keywords

Equivalence Principle Spin Interaction Torsion Balance Coupling Experiment Balance Experiment 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    G. Galilei, 1683, Discorsi e dimostriazioni matematiche intorno a due nuove scienze, Elzevir, Leiden. English Translation by H. Crew and A. de Salvio, Dialogues Concerning Two New Sciences, Macmillan, New York, 1914; reprinted by Dover, New York, 1954.Google Scholar
  2. 2.
    A. Einstein: Jahrb. Radioakt. Elektronik 4, 411 (1907); Corrections by Einstein in Jahrb. Radioakt. Elektronik 5, 98 (1908); English Translations by H. M. Schwartz in Am. J. Phys. 45, 512, 811, 899 (1977).ADSGoogle Scholar
  3. 3.
    L. I. Schi.: Am. J. Phys. 28, 340 (1960)CrossRefADSGoogle Scholar
  4. 4.
    W.-T. Ni: A Nonmetric Theory of Gravity, preprint, Montana State University, Bozeman, Montana, USA (1973), http://gravity5.phys.nthu.edu.tw.
  5. 5.
    W.-T. Ni: Bull. Am. Phys. Soc. 19, 655 (1974).Google Scholar
  6. 6.
    W.-T. Ni: Phys. Rev. Lett. 38, 301 (1977).CrossRefADSMathSciNetGoogle Scholar
  7. 7.
    S. Weinberg: Phys. Rev. Lett. 40, 233 (1978).CrossRefADSMathSciNetGoogle Scholar
  8. 8.
    F. Wilczek: Phys. Rev. Lett. 40, 279 (1978).CrossRefADSGoogle Scholar
  9. 9.
    M. Dine et al.: Phys. Lett. B 104, 1999 (1981).Google Scholar
  10. 10.
    M. Shifman et al.: Nucl. Phys. B 166, 493 (1980).CrossRefADSMathSciNetGoogle Scholar
  11. 11.
    J. Kim: Phys. Rev. Lett. 43, 103 (1979).CrossRefADSGoogle Scholar
  12. 12.
    S. L. Cheng, C. Q. Geng and W.-T. Ni: Phys. Rev. D 52 3132 (1995) and references therein.ADSGoogle Scholar
  13. 13.
    Y. Chou, W.-T. Ni and S.-L. Wang: Mod. Phys. Lett. A 5, 2297 (1990); and references therein.ADSGoogle Scholar
  14. 14.
    S.-S. Pan, W.-T. Ni and S.-C. Chen: Mod. Phys. Lett. A 7, 1287 (1992); and references therein.ADSGoogle Scholar
  15. 15.
    T. C. P. Chui and W.-T. Ni: Phys. Rev. Lett. 71, 3247 (1993).CrossRefADSGoogle Scholar
  16. 16.
    W.-T. Ni, S.-S. Pan, T. C. P. Chui and B.-Y. Cheng: Int. J. Mod. Phys. 8, 5153 (1993).CrossRefADSGoogle Scholar
  17. 17.
    W.-T. Ni, T. C. P. Chui, S.-S. Pan and B.-Y. Cheng: Physica B 194–196 153 (1994).Google Scholar
  18. 18.
    W.-T. Ni: Class. Quantum Grav. 13, A135 (1996); and references therein.CrossRefADSGoogle Scholar
  19. 19.
    W.-T. Ni, S.-S. Pan, H.-C Yeh, L.-S. Hou, J. Wan: Phys. Rev. Lett. 88, 2439 (1999).CrossRefADSGoogle Scholar
  20. 20.
    G. Uhlenbeck and S. Goudsmit: Naturwiss. 13, 953 (1925); Nature 117, 264 (1926).CrossRefGoogle Scholar
  21. 21.
    C. W. F. Everitt et al.: this book (2000).Google Scholar
  22. 22.
    W.-T. Ni: “Spin, Torsion and Polarized Test-Body Experiments”, in Proceedings of the 1983 International School and Symposium on Precision Measurement and Gravity Experiment, Taipei, Republic of China, January 24–February 2, 1983, ed. by W.-T. Ni (Published by National Tsing Hua University, Hsinchu, Taiwan, Republic of China, June 1983), p. 531.Google Scholar
  23. 23.
    F.W. Hehl and W.-T. Ni: Phys. Rev. D 42, 2045 (1990); and references therein.ADSGoogle Scholar
  24. 24.
    É. Cartan: Sur une Généralisation de la notion de courbure de Riemann et les espaces à torsion. C. R. Acad. Sci. ( Paris) 174, 593, (1922).Google Scholar
  25. 25.
    É. Cartan: Sur les variétés à connexion afine et la théorie de la relativitée généralisée I, I (suite), II, Ann. Ec. Norm. Sup. 40, 325 (1923); 41, 1 (1924); 42, 17 (1925).MathSciNetGoogle Scholar
  26. 26.
    T.W.B. Kibble: Lorentz invariance and the gravitational field. J. Math. Phys. 2, 212 (1961).zbMATHCrossRefADSMathSciNetGoogle Scholar
  27. 27.
    D.W. Sciama: On the analogy between charge and spin in general relativity, in Recent developments in general relativity (Pergamon+PWN, Oxford, 1962), p. 415.Google Scholar
  28. 28.
    D.W. Sciama: The physical structure of general relativity. Rev. Mod. Phys. 36, 463, 1103 (1964).CrossRefADSGoogle Scholar
  29. 29.
    F.W. Hehl, P. von der Heyde, G.D. Kerlick, and J.M. Nester: Rev. Mod. Phys. 48, 393 (1976).CrossRefADSGoogle Scholar
  30. 30.
    A. S. Eddington: A generalization of Weyl’s theory of the electromagnetic and gravitational fields, Proc. Roy. Soc. Lond. Ser. A 99, 104 (1921).Google Scholar
  31. 31.
    C. Lämmerzahl, Phys. Lett. A 228, 223 (1997).ADSGoogle Scholar
  32. 32.
    P. Singh and L.H. Ryder: Class. Quantum Grav. 14, 3513 (1997).zbMATHCrossRefADSMathSciNetGoogle Scholar
  33. 33.
    C. N. Yang: Phys. Rev. Lett. 33, 445 (1974).CrossRefADSMathSciNetGoogle Scholar
  34. 34.
    W.-T. Ni: Phys. Rev. Lett. 35, 319 (1975).CrossRefADSGoogle Scholar
  35. 35.
    W.-T. Ni: Math. Proc. Cambridge Phil. Soc. 90, 517 (1981); K.-S. Cheng and W.-T. Ni, ibid 87, 527 (1980).zbMATHCrossRefADSGoogle Scholar
  36. 36.
    A. Ashtekar: Phys. Rev. Lett. 57, 2244 (1986); Phys. Rev. D 36, 1587 (1987); Lectures on Non-Perturbative Canonical Gravity (World Scientific, Singapore 1991).Google Scholar
  37. 37.
    C. Lämmerzahl: Class. Quantum Grav. 15, 13 (1998) (also Gen. Rel. Grav. 28, 1043 (1996)).zbMATHCrossRefADSGoogle Scholar
  38. 38.
    C. Lämmerzahl and W.-T. Ni: work in progress.Google Scholar
  39. 39.
    Gronwald and F. W. Hehl: Metric-afine gauge theory of gravity; I. Foundatoins, Int. J. Mod. Phys. D6, 263 (1997).Google Scholar
  40. 40.
    F. W. Hehl and A. Macias: Metric-afine gauge theory of gravity: II. Exact solutions, Int. J. Mod. Phys. D 8, 399 (1999).ADSMathSciNetGoogle Scholar
  41. 41.
    K. Hayashi and T. Shirafuji: Phys. Rev. D 19, 3524 (1979).ADSMathSciNetGoogle Scholar
  42. 42.
    P.C. Naik and T. Pradhan: J. Phys. A: Math. Gen. 14, 2795 (1981).CrossRefADSGoogle Scholar
  43. 43.
    T. Pradhan, R.P. Malik and P.C. Naik: Pramana 24, 77 (1985).CrossRefADSGoogle Scholar
  44. 44.
    W.-T. Ni: “Equivalence Principles and Precision Experiments” p. 647, in B.N. Taylor and W.D. Phillips (eds.): Precision Measurement and Fundamental Constants II, Natl. Bur. Stand. (U.S.), Spec. Publ. 617 (1984).Google Scholar
  45. 45.
    W.-T. Ni: “Timing Observations of the Pulsar Propagations in the Galactic Gravitational Field as Precision Tests of the Einstein Equivalence Principle”, in B. Hidayat and M.W. Feast (eds.): Proceedings of the Second Asian-Pacific Regional Meeting of the International Astronomical Union, (Tira Pustaka, Jakarta 1984), p. 441.Google Scholar
  46. 46.
    W.-T. Ni: “Equivalence Principles, Their Empirical Foundations, and the Role of Precision Experiments to Test Them”, in W.-T. Ni (ed.): Proceedings of the 1983 International School and Symposium on Precision Measurement and Gravity Experiment, Taipei, Republic of China, January 24–February 2, 1983, (Published by National Tsing Hua University, Hsinchu, Taiwan, Republic of China, June, 1983), p. 491.Google Scholar
  47. 47.
    M.P. Haugan and T.F. Kauffmann: Phys. Rev. D 52, 3168 (1995).ADSGoogle Scholar
  48. 48.
    T.P. Krisher: Phys. Rev. D 44, R2211 (1991).ADSGoogle Scholar
  49. 49.
    S.M. Carroll, G.B. Field, R. Jackiw: Phys. Rev. D 41, 1231 (1990).ADSGoogle Scholar
  50. 50.
    S.M. Carroll and G.B. Field: Phys. Rev. D 43, 3789 (1991).ADSGoogle Scholar
  51. 51.
    B. Nodland and J.P. Ralston: Phys. Rev. Lett. 78, 3043 (1997).CrossRefADSGoogle Scholar
  52. 52.
    J.F.C. Wardle, R.A. Perley, and M.H. Cohen: Phys. Rev. Lett. 79, 1801 (1997).CrossRefADSGoogle Scholar
  53. 53.
    D.J. Eisenstein and E.F. Bunn: Phys. Rev. Lett. 79, 1957 (1997).CrossRefADSGoogle Scholar
  54. 54.
    S.M. Carroll and G.B. Field: Phys. Rev. Lett. 79, 2394 (1997).CrossRefADSGoogle Scholar
  55. 55.
    T.J. Loredo, E.A. Flanagan, and I.M. Wasserman: Phys, Rev. D 56, 7507 (1997).ADSGoogle Scholar
  56. 56.
    S. M. Carroll: Phys. Rev. Lett. 81, 3067 (1998).CrossRefADSGoogle Scholar
  57. 57.
    V.W. Hughes, H.G. Robinson, and V. Beltran-Lopez: Phys. Rev. Lett. 4, 342 (1960); V. Beltran-Lopez, H.G. Robinson, and V.W. Hughes: Bull. Am. Phys. Soc. 6, 424 (1961); R.W.P. Drever: Phil. Mag. 6, 683 (1962); J.F. Ellena, W.-T. Ni and T.-S. Ueng: IEEE Transactions on Instrumentation and Measurement IM-36, 175 (1987).CrossRefADSGoogle Scholar
  58. 58.
    T.E. Chupp, R.J. Hoara, R.A. Loveman, E.R. Oteiza, J.M. Richardson, M.E. Wagshul: Phys. Rev. Lett. 63, 1541 (1989).CrossRefADSGoogle Scholar
  59. 59.
    W.-T. Ni: “Implications of Hughes-Drever Experiments”, in W.-T. Ni (ed.): Proceedings of the 1983 International School and Symposium on Precision Measurement and Gravity Experiment, Taipei, Republic of China, January 24–February 2, 1983, (Published by National Tsing Hua University, Hsinchu, Taiwan, Republic of China, June, 1983), p. 519.Google Scholar
  60. 60.
    R.V. Eötvös, D. Pekar, and E. Fekete: Ann. Phys. (Leipzig) 68, 11 (1922); also R.V. Eötvös: Math. Naturwiss. Ber. Ungarn (Budapest) 8, 65 (1890).CrossRefGoogle Scholar
  61. 61.
    P.G. Roll, R. Krotkov, and R.H. Dicke: Ann. Phys. (N. Y.) 26, 442(1964).zbMATHCrossRefADSMathSciNetGoogle Scholar
  62. 62.
    V.B. Braginsky and V.I. Panov: Zh. Eksp. Teor. Fiz. 61, 873 (1971) [Sov. Phys. JETP 34, 463 (1972)].Google Scholar
  63. 63.
    Y. Su et al.: Phys. Rev. D 50, 3614 (1994); S. Baessler et al.: Phys. Rev. Lett. 83, 3585 (1999).ADSGoogle Scholar
  64. 64.
    R.F.C. Vessot and M.W. Levine: Gen. Rel. Grav. 10, 181 (1979).CrossRefADSGoogle Scholar
  65. 65.
    R.F.C. Vessot et al.: Phys. Rev. Lett. 45, 2081 (1980).CrossRefADSGoogle Scholar
  66. 68.
    W.-T. Ni: Phys. Lett. A 120, 174 (1987).ADSGoogle Scholar
  67. 69.
    R. Mansouri and R. U. Sexl: Gen. Rel. Grav. 8, 497 (1977); 8, 515 (1977); 8, 809 (1977).CrossRefADSGoogle Scholar
  68. 70.
    Ph. Tourrenc, T. Melliti and J. Bosredon: Gen. Rel. Grav. 28, 1071 (1996).zbMATHCrossRefADSMathSciNetGoogle Scholar
  69. 71.
    W.-T. Ni, Y. Chou, S.-S. Pan, C.-H. Lin, T.-Y. Hwong, K.-L. Ko and K.-Y. Li: “An Improvement of the Equivalence Principle Test for Spin-Polarized Bodies and the Mass Loss”, in Proceddings of the 3rd ROC-ROK Metrology Symposium, Hsinchu, May 22–24, published by the Center of Measurement Standards, I.T.R.I. (1990) p. 107; C.-H. Hsieh, P.-Y. Jen, K.-L. Ko, K.-Y. Li, W.-T. Ni, S.-S. Pan, Y.-H Shi and R.-J. Tyan: Mod. Phys. Lett. A4 (1989) 1597; W.-T. Ni, P.-Y Jen, C.-H. Hsieh, K.-L. Ko, S.-C Chen, S.-S. Pan and M.-H Tu, “Test of the Equivalence Principle for Spin-Polarized Bodies”, in J.W. Won and Y.K. Park (eds.): Proceddings of Second ROK-ROC Metrology Symposium (Korea Standards Research Institute, 1988) p. VII-2-1.Google Scholar
  70. 72.
    L.-S. Hou and W.-T. Ni: Rotatable-Tosion-Balance Equivalence Principle Experiment for the Spin-Polarized Ho6Fe23, submitted to Mod. Phys. Lett. A.Google Scholar
  71. 73.
    T.-H. Jen, W.-T. Ni, S.-S. Pan and S.-L. Wang: “Torsion Balance Experiment Searching for Finite-Range Mass-Spin Interactions”, in H. Sato and T. Nakamura (eds.): Proceedings of the Sixth Marcel Grossmann Meeting on General Relativity (World Scientific, Singapore 1992), p. 489.Google Scholar
  72. 74.
    R.C. Ritter et al., L.I. Winkler and G.T. Gillies: Phys. Rev. Lett. 70, 701 (1993); the limit on the electron have been multiplied by 8Π2 to be consistent with our notation (R.C. Ritter, private communication).CrossRefADSGoogle Scholar
  73. 75.
    J.E. Moody and F. Wilczek: Phys. Rev. D30, 130 (1984).ADSGoogle Scholar
  74. 76.
    D.J. Wineland, J.J. Bollinger, D.J. Heinzen, W.M. Itano, and M.G. Raizen: Phys. Rev. Lett. 67, 1735 (1991).CrossRefADSGoogle Scholar
  75. 77.
    B.J. Venema, P.K. Majumder, S.K. Lamoreaux, B.R. Heckel, and E. N. Fortson: Phys. Rev. Lett. 68, 135 (1992).CrossRefADSGoogle Scholar
  76. 78.
    A.N. Youdin et al.: Phys. Rev. Lett. 77, 2170 (1996).CrossRefADSGoogle Scholar
  77. 79.
    D. Shaul et al.: Class. Quantum Grav. 13, A107 (1996), and references therein.CrossRefADSGoogle Scholar
  78. 80.
    W.-T. Ni: Physica B 284–8, 2137 (2000).ADSGoogle Scholar
  79. 81.
    Y.-C. M. Li and W.-T. Ni: Physica B 284–8, 2139 (2000).ADSGoogle Scholar
  80. 82.
    A.A. Ansel'm and N.G. Ural'tsev: Zh. Eksp. Teor. Fiz. 82, 1725 (1982) [Sov. Phys. JETP 55, 997 (1982)]; A.A. Ansel'm: Pis'ma Zh. Eksp. Teor. Fiz. 36, 46 (1982) [JETP Lett. 36, 55 (1982)].Google Scholar
  81. 83.
    D. Graham and R. Newman, in Proceedings of the Eleventh International Conference on General Relativity and Gravitation, Stockholm, Sweden, 1986, edited by M. A. H. MacCallum (Cambridge Univ. Press, New York, 1987), p.614; D. Graham, Ph.D. Dissertation (University of California, Irvine 1987).Google Scholar
  82. 84.
    P. V. Vorobyov and Ya. I. Gitarts: Phys. Lett. B 208, 146 (1988).ADSGoogle Scholar
  83. 85.
    R. C. Ritter, C. E. Goldblum, W.-T. Ni, G. T. Gillies, and C. C. Speake: Phys. Rev. D 42, 977 (1990).ADSGoogle Scholar
  84. 86.
    P. R. Phillips: Phys. Rev. Lett. 59, 1784 (1987).CrossRefADSGoogle Scholar
  85. 87.
    S.-L. Wang, W.-T. Ni and S.-S. Pan: Mod. Phys. Lett. A 8, 3715 (1993).ADSGoogle Scholar
  86. 88.
    F.-L. Chang, H.-C. Yeh, W.-T. Ni and S.-S. Pan: “Improved experimental limit on the cosmological spatial anisotropy for polarized electrons”, InternationalWorkshop on Gravitation and Cosmology (1995), pp. 21.Google Scholar
  87. 89.
    C. J. Berglund et al.: Phys. Rev. Lett. 75, 1879 (1995).CrossRefADSGoogle Scholar
  88. 90.
    L. Stodolsky: Phys. Rev. Lett. 34, 110 (1975).CrossRefADSGoogle Scholar
  89. 91.
    H. Nielson and I. Picek: Nucl. Phys. 211B, 269 (1983).CrossRefADSGoogle Scholar
  90. 92.
    L.-S. Hou and W.-T. Ni, “Test of Spatial Anisotropy for Polarized Electrons Using a Rotatable Torsion Balance”, CD-ROM Proceedings for the International Workshop on Gravitation and Astrophysics, November 17–19, 1997, Tokyo (Published in August, 1998).Google Scholar
  91. 93.
    L.-S. Hou, W.-T. Ni and Y. C. M. Li: Test of Cosmic Spatial Isotropy for Polarized Electrons Using a Rotatable Torsion Balance, submitted to Phys. Rev. Lett.Google Scholar
  92. 94.
    R. Bluhm and V.A. Kostelecky: Rhys. Rev. Lett. 84, 1381 (2000).CrossRefADSGoogle Scholar
  93. 95.
    P.R. Berman (ed.): Atom Interferometry, (Academic Press, 1997), and references therein.Google Scholar
  94. 96.
    Y. Mukharsky, O. Avenel and É. Varoquaux: Rotation Measurements with a Super-fluid 3He Gyrometer, CD-ROM of the 22nd Low-Temperature Conference, Helsinki, 4–11 August, 1999.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2001

Authors and Affiliations

  • Wei-Tou Ni
    • 1
  1. 1.Center for Gravitation and Cosmology Department of PhysicsNational Tsing Hua UniversityHsinchu, TaiwanRepublic of China

Personalised recommendations