Testing the Dirac Equation

  • Claus Lämmerzahl
  • Christian J. Bordé
Conference paper
Part of the Lecture Notes in Physics book series (LNP, volume 562)


The dynamical equations which are basic for the description of the dynamics of quantum felds in arbitrary space-time geometries, can be derived from the requirements of a unique deterministic evolution of the quantum fields, the superposition principle, a finite propagation speed, and probability conservation. We suggest and describe observations and experiments which are able to test the unique deterministic evolution and analyze given experimental data from which restrictions of anomalous terms violating this basic principle can be concluded. One important point is, that such anomalous terms are predicted from loop gravity as well as from string theories. Most accurate data can be obtained from future astrophysical observations. Also, laboratory tests like spectroscopy give constraints on the anomalous terms.


Quantum Gravity Dirac Equation Plane Wave Solution Atomic Interferometry Neutrino Propagation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    E. Fischbach and C.L. Talmadge. The Search for Non-Newtonian Gravity. Springer-Verlag, New York, 1999.zbMATHGoogle Scholar
  2. 2.
    J. Alfaro, H.A. Morales-Tecotl, and L.F. Urrutia. Quantum gravity corrections to neutrino propagation. Phys. Rev. Lett., 84:to appear, 2000.Google Scholar
  3. 3.
    J. Ellis, N.E. Mavromatos, D.V. Nanopoulos, and G. Volkov. Gravitational-recoil effects on fermion propagation in space-time foam. gr-qc/9911055.Google Scholar
  4. 4.
    J. Audretsch and C. Lämmerzahl. A new constructive axiomatic scheme for the geometry of space-time. In Majer U. and Schmidt H.-J., editors, Semantical Aspects of Space-Time Geometry, page 21. BI Verlag, Mannheim, 1993.Google Scholar
  5. 5.
    C. Lämmerzahl and U. Bleyer. A quantum test theory for basic principles of special and general relativity with applications to atomic interferometry and Hughes-Drever type experiments, 1999. preprint, University of Konstanz.Google Scholar
  6. 6.
    A. Shimony. Proposed neutron interferometer test of some nonlinear variants of wave mechanics. Phys. Rev., A 20:394, 1979.CrossRefADSGoogle Scholar
  7. 7.
    S. Weinberg. Testing quantum mechanics. Ann. Phys., 194:336, 1989.CrossRefADSMathSciNetGoogle Scholar
  8. 8.
    C.G. Shull, D.K. Atwood, J. Arthur, and M.A. Horne. Search for a nonlinear variant of the Schrödinger equation by neutron interferometry. Phys. Rev. Lett., 44:765, 1980.CrossRefADSGoogle Scholar
  9. 9.
    J. Ellis, S. Hagelin, D.V. Nanopoulos, and M. Srednicki. Search for violations of quantum mechanics. Nucl. Phys., B 241:381, 1984.CrossRefADSMathSciNetGoogle Scholar
  10. 10.
    C. Lämmerzahl. Quantum Tests of Foundations of General Relativity. Class. Quantum Grav., 14:13, 1998.CrossRefGoogle Scholar
  11. 11.
    F. Burgbacher, C. Lämmerzahl, and A. Macias. Is there a stable hydrogen atom in higher dimensions? J. Math. Phys., 40:625, 1999.zbMATHCrossRefADSMathSciNetGoogle Scholar
  12. 12.
    P.N. Bhat, G.J. Fishman, C.A. Meegan, R.B. Wilson, M.N. Brock, and W.S. Paciesas. Evidence for sub-millisecond structure in a γ-ray burst. Nature, 359:217, 1992.CrossRefADSGoogle Scholar
  13. 13.
    I.S. Gradshteyn and I.M. Ryzhik. Table of Integrals, Series, and Products. Academic Press, Orlando, 1983.Google Scholar
  14. 14.
    Th. Udem, A. Huber, B. Gross, J. Reichert, M. Prevedelli, M. Weitz, and T.W. Hänsch. Phase-coherent measurement of the Hydrogen 1s-2s transition frequency with an optical frequency interval divider chain. Phys. Rev. Lett., 79:2646, 1997.CrossRefADSGoogle Scholar
  15. 15.
    C. Kiefer and T.P. Singh. Quantum gravitational corrections to the functional Schrödinger equation. Phys. Rev. D 44, 1067 (1991).ADSMathSciNetGoogle Scholar
  16. 16.
    K. Pachucki, D. Leibfried, M. Weitz, A. Huber, W. Konig and T. W. Hansch. Theory of the energy levels and precise two-photon spectroscopy of atomic hydrogen and deuterium. J. Phys. B: At. Mol. Opt. Phys. 29, 177 (1996).CrossRefADSGoogle Scholar
  17. 17.
    T. Udem, J. Reichert, R. Holzwarth, T. W. Hänsch. Accurate measurement of large optical frequency differences with a mode-locked laser. Opt. Lett. 24, 881 (1999).ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2001

Authors and Affiliations

  • Claus Lämmerzahl
    • 2
  • Christian J. Bordé
    • 1
  1. 1.Fakultät für PhysikUniversität KonstanzKonstanzGermany
  2. 2.Laboratoire de Physique des LasersInstitut Galilée Université Paris 13VilletaneuseFrance

Personalised recommendations