Advertisement

How Does the Electromagnetic Field Couple to Gravity, in Particular to Metric, Nonmetricity, Torsion, and Curvature?

  • Friedrich W. Hehl
  • Yuri N. Obukhov
Conference paper
Part of the Lecture Notes in Physics book series (LNP, volume 562)

Abstract

The coupling of the electromagnetic field to gravity is an age-old problem. Presently, there is a resurgence of interest in it, mainly for two reasons: (i) Experimental investigations are under way with ever increasing precision, be it in the laboratory or by observing outer space. (ii) One desires to test out alternatives to Einstein’s gravitational theory, in particular those of a gauge-theoretical nature, like Einstein-Cartan theory or metric-afine gravity.— A clean discussion requires a reflection on the foundations of electrodynamics. If one bases electrodynamics on the conservation laws of electric charge and magnetic flux, one finds Maxwell’s equations expressed in terms of the excitation H = (D,H) and the field strength F = (E,B) without any intervention of the metric or the linear connection of spacetime. In other words, there is still no coupling to gravity. Only the constitutive law H = functional(F) mediates such a coupling. We discuss the different ways of how metric, nonmetricity, torsion, and curvature can come into play here. Along the way, we touch on non-local laws (Mashhoon), non-linear ones (Born-Infeld, Heisenberg-Euler, Plebaśki), linear ones, including the Abelian axion (Ni), and fid a method for deriving the metric from linear electrodynamics (Toupin, Schönberg). Finally, we discuss possible non-minimal coupling schemes.

Keywords

Equivalence Principle Constitutive Function Nonlinear Electrodynamic Regular Black Hole Nonminimal Coupling 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    B. Abbott et al. (D0 Collaboration), A search for heavy pointlike Dirac monopoles, Phys. Rev. Lett. 81 (1998) 524–529.CrossRefADSGoogle Scholar
  2. 2.
    E. Ayón-Beato and A. García, Regular black hole in general relativity coupled to nonlinear electrodynamics, Phys. Rev. Lett. 80 (1998) 5056–5059.CrossRefADSGoogle Scholar
  3. 3.
    E. Ayón-Beato and A. García, Non-singular charged black hole solution for nonlinear source, Gen. Rel. Grav. J. 31 (1999) 629–633.zbMATHCrossRefADSGoogle Scholar
  4. 4.
    E. Ayón-Beato and A. García, New regular black hole solution from nonlinear electrodynamics, Phys. Lett. B464 (1999) 25–29.ADSGoogle Scholar
  5. 5.
    I.M. Benn, T. Dereli, and R.W. Tucker, Gauge field interactions in spaces with arbitrary torsion, Phys. Lett. B96 (1980) 100–104.ADSMathSciNetGoogle Scholar
  6. 6.
    M. Born and L. Infeld, Foundations of the new field theory, Proc. Roy. Soc. (London) A144 (1934) 425–451.Google Scholar
  7. 7.
    C.H. Brans, Complex 2-forms representation of the Einstein equations: The Petrov Type III solutions, J. Math. Phys. 12 (1971) 1616–1619.zbMATHCrossRefADSMathSciNetGoogle Scholar
  8. 8.
    H.A. Buchdahl, On a Lagrangian for non-minimally coupled gravitational and electromagnetic fields, J. Phys. A12 (1979) 1037–1043.ADSGoogle Scholar
  9. 9.
    R. Capovilla, T. Jacobson, and J. Dell, General relativity without the metric, Phys. Rev. Lett. 63 (1989) 2325–2328.CrossRefADSMathSciNetGoogle Scholar
  10. 10.
    S.M. Carroll, G.B. Field, and R. Jackiw, Limits on a Lorentz-and parity-violating modification of electrodynamics, Phys. Rev. D41 (1990) 1231–1240.ADSGoogle Scholar
  11. 11.
    C. Caso et al. (Particle Data Group), European Phys. J. C3 (1998) 1–794 and 1999 partial update for edition 2000 (ULR: http://pdg.lbl.gov), here: Axions and other Very Light Bosons.Google Scholar
  12. 12.
    L. Cooper and G.E. Stedman, Axion detection by ring lasers, Phys. Lett. B357 (1995) 464–468.ADSGoogle Scholar
  13. 13.
    H. Dehmelt, R. Mittleman, R.S. van Dyck, Jr., and P. Schwinberg, Past electron positron g-2 experiments yielded sharpest bound on CPT violation, Phys. Rev. Lett. 83 (1999) 4694–4696.CrossRefADSGoogle Scholar
  14. 14.
    V.C. de Andrade, J.G. Pereira, Torsion and the electromagnetic field, Int. J. Mod. Phys. D8 (1999) 141–151.ADSGoogle Scholar
  15. 15.
    R. de Ritis, M. Lavorgna, and C. Stornaiolo, Geometric optics in a Riemann-Cartan space-time, Phys. Lett. A98 (1983) 411–413.ADSGoogle Scholar
  16. 16.
    V. de Sabbata and C. Sivaram, Spin and Torsion in Gravitation. Singapore, World Scientific (1994).zbMATHGoogle Scholar
  17. 17.
    I.T. Drummond and S.J. Hathrell, QED vacuum polarization in a background gravitational field and its effect on the velocity of photons, Phys. Rev. D22 (1980) 343–355.ADSMathSciNetGoogle Scholar
  18. 18.
    A.S. Eddington, The Mathematical Theory of Relativity. Cambridge University Press, Cambridge (1924) Sec.74(b).zbMATHGoogle Scholar
  19. 19.
    A. Einstein, Eine neue formale Deutung der Maxwellschen Feldgleichungen der Elektrodynamik, Sitzungsber. Königl. Preuss. Akad. Wiss. (Berlin) (1916) pp. 184–188; see also The Collected Papers of Albert Einstein. Vol.6, A.J. Kox et al., eds. (1996) pp. 263-269.Google Scholar
  20. 20.
    A. Einstein, The Meaning of Relativity, 5th edition. Princeton University Press, Princeton (1955).zbMATHGoogle Scholar
  21. 21.
    T. Frankel, The Geometry of Physics-An Introduction. Cambridge University Press, Cambridge (1997).zbMATHGoogle Scholar
  22. 22.
    G.W. Gibbons and D.A. Rasheed, Magnetic duality rotations in nonlinear electrodynamics, Nucl. Phys. B454 (1995) 185–206.CrossRefADSMathSciNetGoogle Scholar
  23. 23.
    H. Goenner, Theories of gravitation with nonminimal coupling of matter and the gravitational field, Found. Phys. 14 (1984) 865–881.CrossRefADSMathSciNetGoogle Scholar
  24. 24.
    W. Gordon, Zur Lichtfortpflanzung nach der Relativitätstheorie, Ann. Phys. (Leipzig) 72 (1923) 421–456.ADSGoogle Scholar
  25. 25.
    F. Gronwald and F. W. Hehl, On the gauge aspects of gravity, in: International School of Cosmology and Gravitation: 14th Course: Quantum Gravity, held May 1995 in Erice, Italy. Proceedings. P.G. Bergmann et al. (eds.). World Scientific, Singapore (1996) pp. 148–198. Los Alamos Eprint Archive, gr-qc/9602013.Google Scholar
  26. 26.
    G. Harnett, Metrics and dual operators, J. Math. Phys. 32 (1991) 84–91.zbMATHCrossRefADSMathSciNetGoogle Scholar
  27. 27.
    D. Hartley: Normal frames for non-Riemannian connections, Class. Quantum Grav. 12 (1995) L103–L105.CrossRefADSMathSciNetGoogle Scholar
  28. 28.
    M. Haugan and C. Lämmerzahl, On the experimental foundations of the Maxwell equations, Ann. Physik (Leipzig), to be published (2000).Google Scholar
  29. 29.
    Y.D. He, Search for a Dirac magnetic monopole in high energy nucleus-nucleus collisions, Phys. Rev. Lett. 79 (1997) 3134–3137.CrossRefADSGoogle Scholar
  30. 30.
    F.W. Hehl, P. von der Heyde, G.D. Kerlick, and J.M. Nester, General relativity with spin and torsion: Foundations and prospects, Rev. Mod. Phys. 48 (1976) 393–416.CrossRefADSGoogle Scholar
  31. 31.
    F.W. Hehl, J.D. McCrea, E.W. Mielke, and Y. Ne'eman, Metric-afine gauge theory of gravity: Field equations, Noether identities, world spinors, and breaking of dilation invariance, Phys. Rep. 258 (1995) 1–171.CrossRefADSMathSciNetGoogle Scholar
  32. 32.
    F.W. Hehl, Yu.N. Obukhov, and G.F. Rubilar, Classical electrodynamics: A Tutorial on its Foundations, in: Quo vadis geodesia...? Festschrift for Erik W. Grafarend, F. Krumm and V.S. Schwarze (eds.) Univ. Stuttgart, ISSN 0933-2839 (1999) pp. 171–184. Los Alamos Eprint Archive, physics/9907046.Google Scholar
  33. 33.
    F.W. Hehl, Yu.N. Obukhov, and G.F. Rubilar, Spacetime metric from linear electrodynamics II, talk given at International European Conference on Gravitation: Journées Relativistes 99, Weimar, Germany, 12–17 Sep 1999. Ann. Phys. (Leipzig) 9 (2000), in print; Los Alamos Eprint Archive, gr-qc/9911096.Google Scholar
  34. 34.
    W. Heisenberg and H. Euler, Consequences of Dirac’s theory of positrons, Z. Phys. 98 (1936) 714–732(in German).zbMATHCrossRefADSGoogle Scholar
  35. 35.
    J.S. Heyl and L. Hernquist, Birefringence and dichroism of the QED vacuum, J. Phys. A30 (1997) 6485–6492.ADSMathSciNetGoogle Scholar
  36. 36.
    S. Hojman, M. Rosenbaum, M.P. Ryan, and L.C. Shepley, Gauge invariance, minimal coupling, and torsion, Phys. Rev. D17 (1978) 3141–3146.ADSMathSciNetGoogle Scholar
  37. 37.
    G. ’t Hooft, A chiral alternative to the vierbein field in general relativity, Nucl. Phys. B357 (1991) 211–221.CrossRefADSGoogle Scholar
  38. 38.
    B.Z. Iliev, Normal frames and the validity of the equivalence principle. 1. Cases in a neighborhood and at a point, J. Phys. A29 (1996) 6895–6902.ADSMathSciNetGoogle Scholar
  39. 39.
    C. Itzykson and J.-B. Zuber, Quantum Field Theory. McGraw Hill, New York (1985).Google Scholar
  40. 40.
    A.Z. Jadczyk, Electromagnetic permeability of the vacuum and light-cone structure, Bull. Acad. Pol. Sci., Sér. sci. phys. et astr. 27 (1979) 91–94.MathSciNetGoogle Scholar
  41. 41.
    J.K. Jain, Composite-fermion approach for the fractional quantum Hall effect, Phys. Rev. Lett. 63 (1989) 199–202.CrossRefADSGoogle Scholar
  42. 42.
    J.K. Jain, Composite fermion theory of fractional quantum Hall effect, Acta Phys. Polon. B26(1995) 2149–2166.Google Scholar
  43. 43.
    B.L. Johnson and G. Kirczenow, Composite fermions in the quantum Hall effect, Rep. Prog. Phys. 60 (1997) 889–939.CrossRefADSGoogle Scholar
  44. 44.
    M.W. Keller, A.L. Eichenberger, J.M. Martinis, and N.M. Zimmerman, A capacitance standard based on counting electrons, Science 285 (1999) 1706–1709.CrossRefGoogle Scholar
  45. 45.
    E.W. Kolb and M.S. Turner, The Early Universe. Addison-Wesley, Redwood City (1990) Chapter 10: Axions.zbMATHGoogle Scholar
  46. 46.
    C. Lämmerzahl, R.A. Puntigam, and F.W. Hehl, Can the electromagnetic field couple to post-Riemannian structures? In: Proceedings of the 8th Marcel Grossmann Meeting on General Relativity, Jerusalem 1997, T. Piran and R. Ruffini, eds..World Scientific, Singapore (1999).Google Scholar
  47. 47.
    A. Lue, L. Wang, and M. Kamionkowski, Cosmological signature of new parityviolating interactions, Phys. Rev. Lett. 83 (1999) 1506–1509.CrossRefADSGoogle Scholar
  48. 48.
    P. Majumdar and S. SenGupta, Parity violating gravitational coupling of electromagnetic fields, Class. Quantum Grav. 16 (1999) L89–L94.zbMATHCrossRefADSMathSciNetGoogle Scholar
  49. 49.
    B. Mashhoon, Nonlocal electrodynamics, in: Cosmology and Gravitation, Proc. VII Brasilian School of Cosmology and Gravitation, Rio de Janeiro, August 1993, M. Novello, editor. Editions Frontieres, Gif-sur-Yvette (1994) pp. 245–295.Google Scholar
  50. 50.
    J.C. Maxwell, A dynamical theory of the electromagnetic field, Ref.[65], Vol.1, pp. 526–597, see, in particular, Part III of this article.Google Scholar
  51. 51.
    E.W. Mielke, Geometrodynamics of Gauge Fields-On the geometry of Yang-Mills and gravitational gauge theories. Akademie-Verlag, Berlin (1987).zbMATHGoogle Scholar
  52. 52.
    C.W. Misner, K.S. Thorne, and J.A. Wheeler, Gravitation. Freeman, San Francisco (1973).Google Scholar
  53. 53.
    S. Mohanty and A.R. Prasanna, Photon propagation in Einstein and higher derivative gravity, Nucl. Phys. B526 (1998) 501–508.CrossRefADSMathSciNetGoogle Scholar
  54. 54.
    J.E. Moody and F. Wilczek, New macroscopic forces? Phys. Rev. D30 (1984) 130–138.ADSGoogle Scholar
  55. 55.
    U. Muench, F.W. Hehl, and B. Mashhoon, Acceleration-induced nonlocal electrodynamics in Minkowski spacetime, Preprint Univ. Missouri-Columbia (March 2000), 14 pp.; Los Alamos Eprint Archive, gr-qc/0003093.Google Scholar
  56. 56.
    B. Mukhopadhyaya and S. Sengupta, A geometrical interpretation of parity violation in gravity with torsion, Phys. Lett. B458 (1999) 8–12.ADSGoogle Scholar
  57. 57.
    C. Mukku and W.A. Sayed, Torsion without torsion, Phys. Lett. B82 (1979) 382–386.ADSMathSciNetGoogle Scholar
  58. 58.
    F. Müller-Hoissen, Non-minimal coupling from dimensional reduction of the Gauss-Bonnet action, Phys. Lett. B201 (1988) 325–327.ADSGoogle Scholar
  59. 59.
    F. Müller-Hoissen, Modification of Einstein Yang-Mills theory from dimensional reduction of the Gauss-Bonnet action, Class. Quantum Grav. 5 (1988) L35–L40.CrossRefGoogle Scholar
  60. 60.
    F. Müller-Hoissen and R. Sippel, Spherically symmetric solutions of the nonminimally coupled Einstein-Maxwell equations, Class. Quantum Grav. 5 (1988) 1473–1488.CrossRefADSGoogle Scholar
  61. 61.
    Y. Nambu, The Aharonov-Bohm problem revisited, Los Alamos Eprint archive: hep-th/9810182.Google Scholar
  62. 62.
    W.-T. Ni, A non-metric theory of gravity. Dept. Physics, Montana State University, Bozeman. Preprint December 1973. [This paper is referred to by W.-T. Ni in Bull. Amer. Phys. Soc. 19 (1974) 655.] The paper is available via http://gravity5.phys.nthu.edu.tw/.Google Scholar
  63. 63.
    W.-T. Ni, Equivalence principles and electromagnetism, Phys. Rev. Lett. 38 (1977) 301–304.CrossRefADSMathSciNetGoogle Scholar
  64. 64.
    W.-T. Ni, S.-S. Pan, H.-C. Yeh, L.-S. Hou, and J.-L. Wan, Search for an axionlike spin coupling using a paramagnetic salt with a dc SQUID, Phys. Rev. Lett. 82 (1999) 2439–2442.CrossRefADSGoogle Scholar
  65. 65.
    W.D. Niven (ed.), The Scientific Papers of James Clerk Maxwell, 2Volumes. Dover, New York (1965).zbMATHGoogle Scholar
  66. 66.
    Yu. N. Obukhov, T. Fukui, and G.F. Rubilar, Wave propagation in linear electrodynamics, draft, University of Cologne (Feb. 2000).Google Scholar
  67. 67.
    Yu.N. Obukhov and F.W. Hehl, Space-time metric from linear electrodynamics, Phys. Lett. B458 (1999) 466–470.ADSMathSciNetGoogle Scholar
  68. 68.
    Yu.N. Obukhov and S.I. Tertychniy, Vacuum Einstein equations in terms of curvature-forms, Class. Quantum Grav. 13 (1996) 1623–1640.zbMATHCrossRefADSMathSciNetGoogle Scholar
  69. 69.
    A. Peres, Electromagnetism, geometry, and the equivalence principle, Ann. Phys. (NY) 19 (1962) 279–286.zbMATHCrossRefADSMathSciNetGoogle Scholar
  70. 70.
    C. Piron and D.J. Moore, New aspects of field theory, Turk. J. Phys. 19 (1995) 202–216.Google Scholar
  71. 71.
    J. Plebański, Non-Linear Electrodynamics-a Study, Nordita (1968). Our copy is undated and stems from the CINVESTAV Library, Mexico City (courtesy A. Macías).Google Scholar
  72. 72.
    E.J. Post, Formal Structure of Electromagnetics-General Covariance and Electromagnetics. North Holland, Amsterdam (1962) and Dover, Mineola, New York (1997).Google Scholar
  73. 73.
    E.J. Post, Quantum Reprogramming-Ensembles and Single Systems: A Two-Tier Approach to Quantum Mechanics. Kluwer, Dordrecht (1995).Google Scholar
  74. 74.
    A.R. Prasanna, A new invariant for electromagnetic fields in curved space-time, Phys. Lett. A37 (1971) 331–332.ADSMathSciNetGoogle Scholar
  75. 75.
    A.R. Prasanna, Maxwell’s equations in Riemann-Cartan space U4, Phys. Lett. A54 (1975) 17–18.ADSMathSciNetGoogle Scholar
  76. 76.
    R.A. Puntigam, C. Lämmerzahl, and F.W. Hehl, Maxwell’s theory on a post-Riemannian spacetime and the equivalence principle, Class. Quantum Grav. 14 (1997) 1347–1356.zbMATHCrossRefADSGoogle Scholar
  77. 77.
    M. Schönberg, Electromagnetism and gravitation, Rivista Brasileira de Fisica 1 (1971) 91–122.Google Scholar
  78. 78.
    J.A. Schouten, Tensor Analysis for Physicists. 2nd edition. Dover, Mineola, New York (1989).Google Scholar
  79. 79.
    G.N. Shikin, Static spherically symmetric solutions of the system of Einstein equations and non-linear electrodynamics equations with an arbitrary Lagrangian, in: “Relativity theory and gravitation”, V.I. Rodichev, ed. Nauka, Moscow (1976) pp. 129–132 (in Russian).Google Scholar
  80. 80.
    P. Sikivie, ed., Axions’ 98. Proceedings of the 5th IFT Workshop on Axions, Gainesville, Florida, USA. Nucl. Phys. B (Proc. Suppl.) 72 (1999) 1–240.Google Scholar
  81. 81.
    G.V. Skrotskii, The influence of gravitation on the propagation of light, Sov. Phys. Doklady 2 (1957) 226–229.zbMATHADSGoogle Scholar
  82. 82.
    L.L. Smalley, On the extension of geometric optics from Riemannian to Riemann-Cartan spacetime, Phys. Lett. A117 (1986) 267–269.ADSMathSciNetGoogle Scholar
  83. 83.
    J. Stachel, Covariant formulation of the Cauchy problem in generalized electrodynamics and general relativity, Acta Phys. Polon. 35 (1969) 689–709.MathSciNetGoogle Scholar
  84. 84.
    M. Tinkham, Introduction to Superconductivity. 2nd ed.. McGraw-Hill, New York (1996).Google Scholar
  85. 85.
    R.A. Toupin, Elasticity and electro-magnetics, in: Non-Linear Continuum Theories, C.I.M.E. Conference, Bressanone, Italy 1965. C. Truesdell and G. Grioli coordinators Pp.203–342.Google Scholar
  86. 86.
    A. Trautman, Gauge and optical aspects of gravitation, Class. Quantum Grav. 16 (1999) A157–A175.zbMATHCrossRefADSMathSciNetGoogle Scholar
  87. 87.
    C. Truesdell and R.A. Toupin, The Classical Field Theories, in: Handbuch der Physik, Vol. III/1, S. Flügge ed.. Springer, Berlin (1960) pp. 226–793.Google Scholar
  88. 88.
    H. Urbantke, A quasi-metric associated with SU(2) Yang-Mills field, Acta Phys. Austriaca Suppl. XIX (1978) 875–816.Google Scholar
  89. 89.
    A.M. Volkov, A.A. Izmest'ev, and G.V. Skrotskii, The propagation of electromagnetic waves in a Riemannian space, Sov. Phys. JETP 32 (1971) 686–689 [ZhETF 59 (1970) 1254-1261 (in Russian)].ADSMathSciNetGoogle Scholar
  90. 90.
    C. Wang, Mathematical Principles of Mechanics and Electromagnetism, Part B: Electromagnetism and Gravitation. Plenum Press, New York (1979).zbMATHGoogle Scholar
  91. 91.
    S. Weinberg, A new light boson? Phys. Rev. Lett. 40 (1978) 223–226.CrossRefADSGoogle Scholar
  92. 92.
    F. Wilczek, Problem of strong P and T invariance in the presence of instantons, Phys. Rev. Lett. 40 (1978) 279–282.CrossRefADSGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2001

Authors and Affiliations

  • Friedrich W. Hehl
    • 1
    • 2
  • Yuri N. Obukhov
    • 3
  1. 1.School of Natural SciencesInstitute for Advanced StudyPrincetonUSA
  2. 2.Institute for Theoretical PhysicsUniversity of CologneKölnGermany
  3. 3.Department of Theoretical PhysicsMoscow State UniversityMoscowRussia

Personalised recommendations