Advertisement

Relic Gravitational Waves and Their Detection

  • Leonid P. Grishchuk
Conference paper
Part of the Lecture Notes in Physics book series (LNP, volume 562)

Abstract

The range of expected amplitudes and spectral slopes of relic (squeezed) gravitational waves, predicted by theory and partially supported by observations, is within the reach of sensitive gravity-wave detectors. In the most favorable case, the detection of relic gravitational waves can be achieved by the cross-correlation of outputs of the initial laser interferometers in LIGO, VIRGO, GEO600. In the more realistic case, the sensitivity of advanced ground-based and space-based laser interferometers will be needed. The specific statistical signature of relic gravitational waves, associated with the phenomenon of squeezing, is a potential reserve for further improvement of the signal to noise ratio.

Keywords

Vacuum State Gravitational Wave Spectral Index Density Perturbation Laser Interferometer 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    L.P. Grishchuk: Zh. Eksp. Teor. Fiz. 67, 825 (1974) [JETP 40, 409 (1975)]; Ann. NY Acad. Sci. 302, 439 (1977); Uspekhi Fiz. Nauk. 156, 297 (1988) [Sov. Phys.-Uspekhi. 31, 940 (1988)].ADSGoogle Scholar
  2. 2.
    K.S. Thorne, in S.W. Hawking and W. Israel (eds.): 300 Years of Gravitation (Cambridge University Press, Cambridge 1987), p. 330.Google Scholar
  3. 3.
    K.S. Thorne, in E. Kolb and R. Peccei (eds.): Particle and Nuclear Astrophysics and Cosmology in the Next Millenium (World Scientific, Singapore 1995), p. 160.Google Scholar
  4. 4.
    B.F. Schutz: Class. Quant. Grav. 16, A131 (1999).zbMATHCrossRefADSMathSciNetGoogle Scholar
  5. 5.
    P.L. Knight: in S. Reynaud, E. Giacobino, and J. Zinn-Justin (eds.): Quantum Fluctuations (Elsevier Science 1997), p. 5.Google Scholar
  6. 6.
    L.P. Grishchuk and Yu.V. Sidorov: Class. Quant. Grav. 6, L161 (1989); Phys. Rev. D 42, 3413 (1990).CrossRefADSGoogle Scholar
  7. 7.
    L.P. Grishchuk, in Workshop on Squeezed States and Uncertainty Relations, NASA Conf. Publ. 3135 329 (1992). Class. Quant. Grav. 10, 2449 (1993); in S. Reynaud, E. Giacobino, and J. Zinn-Justin (eds.): Quantum Fluctuations (Elsevier Science 1997), p. 541.Google Scholar
  8. 8.
    L.D. Landau and E.M. Lifshitz: The Classical Theory of Fields (New York: Pergamon) 1975.Google Scholar
  9. 9.
    W. Schleich and J.A. Wheeler: J. Opt. Soc. Am. B4, 1715 (1987); W. Schleich et. al.: Phys. Rev. A 40, 7405 (1989).ADSGoogle Scholar
  10. 10.
    Ya.B. Zeldovich and I.D. Novikov: The Structure and Evolution of the Universe (University of Chicago Press, Chicago 1983).Google Scholar
  11. 11.
    M. Giovannini: Phys. Rev. D 58, 083504 (1998); Report hep-ph/9912480.ADSGoogle Scholar
  12. 12.
    L.P. Grishchuk: Report gr-qc/9810055.Google Scholar
  13. 13.
    G. Veneziano: Phys. Lett. B 265, 287 (1991); M. Gasperini and G. Veneziano: Astropart. Phys. 1, 317 (1993); M. Gasperini and M. Giovannini: Phys. Rev. D 47, 1519 (1993); M. Gasperini: Report hep-th/9607146.ADSMathSciNetGoogle Scholar
  14. 14.
    T. Creighton: Report gr-qc/9907045.Google Scholar
  15. 15.
    G.F. Smoot et. al.: Astroph. J. 396, L1 (1992).CrossRefADSGoogle Scholar
  16. 16.
    C.L. Bennet et. al.: Astroph. J. 464, L1 (1996).CrossRefADSGoogle Scholar
  17. 17.
    A. Melchiori, M.V. Sazhin, V.V. Shulga, and N. Vittorio: Astroph. J. 518, 562 (1999).CrossRefADSGoogle Scholar
  18. 18.
    L.P. Grishchuk: Phys. Rev. D 50, 7154 (1994); in N. Sanchez and A. Zichichi (eds.): Current Topics in Astrofundamental Physics: Primordial Cosmology (Kluwer Academic 1998), p. 539; Report gr-qc/9801011.Google Scholar
  19. 19.
    L.P. Grishchuk: Class. Quant. Grav. 14, 1445 (1997).CrossRefADSGoogle Scholar
  20. 20.
    J. Martin and D.J. Schwarz: Report astro-ph/9911225.Google Scholar
  21. 21.
    A. Abramovici et. al.: Science 256, 325 (1992).CrossRefADSGoogle Scholar
  22. 22.
    C. Bradaschia et. al.: Nucl. Instrum. and Methods A 289, 518 (1990).ADSGoogle Scholar
  23. 23.
    J. Hough and K. Danzmann et. al.: GEO600 Proposal, 1994.Google Scholar
  24. 24.
    P. Bender et. al.: LISA Pre-Phase A Report, Second Edition, 1998.Google Scholar
  25. 25.
    S.L. Larson, W. A. Hiscock. and R. W. Hellings: Report gr-qc/9909080.Google Scholar
  26. 26.
    Gravitational Wave Experiments, E. Coccia, G. Pizzella, and F. Ronga, eds. (World Scientific, Singapore 1995).Google Scholar
  27. 27.
    Gravitational Waves: Sources and Detection, I. Giufolini and F. Fidecaro, eds. (World Scientific, Singapore 1997).Google Scholar
  28. 28.
    W. Folkner (ed.): Laser Interferometer Space Antenna (AIP Conference Proceedings 456, 1998).Google Scholar
  29. 30.
    L.P. Grishchuk: Pis’ma Zh. Eks. Teor. Fiz. 23, 326 (1976) [JETP Lett. 23, 293 (1976)].ADSGoogle Scholar
  30. 31.
    P.F. Michelson: Mon. Not. R. Astr. Soc. 227, 933 (1987).ADSGoogle Scholar
  31. 32.
    N.L. Christensen: Phys. Rev. D 46, 5250 (1992).ADSMathSciNetGoogle Scholar
  32. 33.
    E.E. Flanagan: Phys. Rev. D 48, 2389 (1993).ADSGoogle Scholar
  33. 34.
    B. Allen, in J-A. Marck and J.-P. Lasota (eds.): Relativistic Gravitation and Gravitational Radiation (Cambridge University Press, Cambridghe 1997) p. 373.Google Scholar
  34. 35.
    B. Allen, E.E. Flanagan and M.A. Papa: Report gr-qc/9906054.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2001

Authors and Affiliations

  • Leonid P. Grishchuk
    • 1
    • 2
  1. 1.Department of Physics and AstronomyCardiff UniversityCardiffUK
  2. 2.Sternberg Astronomical InstituteMoscow UniversityMoscowRussia

Personalised recommendations