Advertisement

A New Approach for Traveltime Tomography and Migration Without Ray Tracing

  • Philippe O. Ecoublet
  • Satish C. Singh
Chapter
  • 556 Downloads
Part of the Topics in Applied Physics book series (TAP, volume 84)

Abstract

We present a new method for traveltime tomography. In this method, the traveltime between source and receiver is described by an analytical function, which consists of a series expansion of geometrical coordinates of the source and receiver locations. As the traveltime is derived from the eikonal equation, the analytical function must also satisfy the eikonal equation. This condition imposes a strong constraint on its uniqueness. The coefficients of the series expansion are estimated by minimizing the misfit between the observed and the analytical time function in a least-square sense. Once the coefficients of the series expansion are known, the eikonal equation, which also turns out to be in the form of a series expansion, provides the velocity in the medium. Thus there are two analytical functions, one defining the traveltime and the other defining the slowness, and they can be used for prestack depth migration and velocity model definition. The method can easily be extended to incorporate reflection data and has potential for solving 3-dimensional seismic reflection and global seismology inverse problems.

Keywords

Series Expansion Velocity Model Eikonal Equation Tomographic Inversion Receiver Distance 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    K. Tanabe, Projection method for solving a singular system of linear equations and its applications, Num. Math. 17, 203–214 (1971)zbMATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    R. M. Mersereau, Direct Fourier transform techniques in 3-D image reconstruction, Comput. Biol. Med. 6, 247–258 (1976)CrossRefGoogle Scholar
  3. 3.
    A. C. Kak, Computerized tomography with X-ray, emission, and ultrasound sources, Proc. IEEE 67, 1245–1272 (1979)CrossRefGoogle Scholar
  4. 4.
    A. K. Louis, F. Natterer, Mathematical problems of computerized tomography, Proc. IEEE 71, 379–389 (1983)CrossRefGoogle Scholar
  5. 5.
    K. A. Dines, R. J. Lytle, Computerized geophysical tomography, Proc. IEEE 67, 1065–1073 (1979)CrossRefADSGoogle Scholar
  6. 6.
    R. Gordon, A tutorial on ART, IEEE Trans. Nucl. Sci. 21, 78–93 (1974)Google Scholar
  7. 7.
    Y. Censor, Finite series-expansion reconstruction methods, Proc. IEEE 71, 409–419 (1983)CrossRefGoogle Scholar
  8. 8.
    M. H. Worthington, An introduction to geophysical tomography, First Break, 20–26, Nov. (1984)Google Scholar
  9. 9.
    W. S. Phillips, M. C. Fehler, Traveltime tomography: A comparison of popular methods, Geophys. 56, 1639–1649 (1991)CrossRefGoogle Scholar
  10. 10.
    R. P. Bording, A. Gersztenkorn, L. R. Lines, J. A. Scales, S. Treitel, Applications of seismic travel-time tomography, Geophys. J. R. Astr. Soc. 90, 285–303 (1987)Google Scholar
  11. 11.
    P. Carrion, Dual tomography for imaging complex structures, Geophys. 56, 1395–1404 (1991)CrossRefGoogle Scholar
  12. 12.
    D. D. Jackson, The use of a priori data to resolve non-uniqueness in linear inversion, Geophys. J. R. Astron. Soc. 57, 137–157 (1979)ADSGoogle Scholar
  13. 13.
    J. G. Berryman, Fermat’s principle and non-linear traveltime tomography, Phys. Rev. Lett. 62, 2953–2956 (1989)zbMATHCrossRefADSMathSciNetGoogle Scholar
  14. 14.
    J. G. Berryman, Stable iterative reconstruction algorithm for nonlinear travel-time tomography, Inv. Prob. 6, 21–42 (1990)zbMATHCrossRefMathSciNetGoogle Scholar
  15. 15.
    J. E. Vidale, Finite difference calculation of traveltimes in three dimensions, Geophys. 55, 521–526 (1990)CrossRefGoogle Scholar
  16. 16.
    T. J. Moser, Shortest path calculation of seismic rays, Geophys. 56, 59–67 (1991)CrossRefGoogle Scholar
  17. 17.
    R. H. T. Bates, V. A. Smith, R. D. Murch, Manageable multidimensional inverse scattering theory, Phys. Rep. 201, 185–277 (1991)CrossRefADSMathSciNetGoogle Scholar
  18. 18.
    S. A. Enright, S. M. Dale, V. A. Smith, R. D. Murch, R. H. T. Bates, Towards solving the bent-ray tomographic problem, Inv. Prob. 8, 83–94 (1992)zbMATHCrossRefMathSciNetGoogle Scholar
  19. 19.
    G. Arfken, Mathematical Methods for Physicists, 3rd ed. (Academic, New York 1985)Google Scholar
  20. 20.
    J. A. Scales, Introduction to Nonlinear Optimization (Macmillan, New York 1985)Google Scholar
  21. 21.
    G. Golub, C. Reinsch, Singular value decomposition and least squares solution, Num. Math. 14, 403–420 (1970)zbMATHCrossRefMathSciNetGoogle Scholar
  22. 22.
    W. H. Press, S. A. Teukolsky, W. T. Vetterling, B. P. Flannery, Numerical Recipes in Fortran — the Art of Scientific Computing, 2nd ed. (Cambridge Univ. Press, Cambridge 1992)zbMATHGoogle Scholar
  23. 23.
    Ö. Yilmaz, Seismic Data Processing (Society Exploration Geophysicists, Tulsa, Okla. 1987)Google Scholar
  24. 24.
    W. Schneider, Integral formulation for migration in two and three dimensions, Geophys. 43, 49–76 (1978)CrossRefGoogle Scholar
  25. 25.
    J. R. Berryhill, Wave-equation datuming, Geophys. 44, 1329–1333 (1979)CrossRefGoogle Scholar
  26. 26.
    A. Tarantola, Inverse Problem Theory; Methods for Data Fitting and Model Parameter Estimation (Elsevier, Amsterdam 1987)Google Scholar
  27. 27.
    G. M. Jackson, F. Pawlak, Interactive tomography for VSP migration velocity models, 56th Annu. Int. Meeting EAEG, Extend. Abstr. (1994)Google Scholar
  28. 28.
    G. M. Jackson, Experiences with anisotropic well seismic migration-field data example, 57th Annu. Int. Meeting EAEG, Extend. Abstr. (1995)Google Scholar
  29. 29.
    R. J. Michelena, J. M. Harris, Tomographic traveltime inversion using natural pixels, Geophys. 56, 635–644 (1991)CrossRefGoogle Scholar
  30. 30.
    P. Podvin, I. Lecomte, Finite difference computation of traveltimes in very contrasted velocity models — a massively parallel approach and its associated tools, Geophys. J. Int. 105, 271–284 (1991)CrossRefADSGoogle Scholar
  31. 31.
    A. Tarantola, B. Valette, Generalized nonlinear inverse problems solved using the least square criterion, Rev. Geophys. Space Phys. 20, 219–232 (1982)ADSMathSciNetCrossRefGoogle Scholar
  32. 32.
    J. G. Berryman, Weighted least-squares criteria for seismic traveltime tomography, IEEE Trans. Geosci. Remote Sensing 27, 302–309 (1989)CrossRefADSGoogle Scholar
  33. 33.
    P. O. Ecoublet, Bent-ray traveltime tomography and migration without ray tracing, Ph.D. thesis, Department of Earth Sciences, Cambridge University (1995)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2002

Authors and Affiliations

  • Philippe O. Ecoublet
    • 1
  • Satish C. Singh
    • 1
    • 2
  1. 1.Bullard Laboratories, Department of Earth SciencesUniversity of CambridgeCambridgeUK
  2. 2.Laboratoire de Géosciences MarinesInstitut de Physique du Globe de ParisParis, Cedex 5France

Personalised recommendations