Advertisement

Acoustic Time-Reversal Mirrors

  • Mathias Fink
Chapter
Part of the Topics in Applied Physics book series (TAP, volume 84)

Abstract

The objective of this paper is to show that time-reversal invariance can be exploited in acoustics to accurately control wave propagation through complex media.

Keywords

Time Reversal Array Element Lamb Wave Directivity Pattern Phase Conjugation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    M. Fink, C. Prada, F. Wu, D. Cassereau, Self focusing in inhomogeneous media with time reversal acoustic mirrors, IEEE Ultras. Symp. Proc. 1, 681–686 (1989)CrossRefGoogle Scholar
  2. 2.
    M. Fink, Time reversal of Ultrasonic field-part I: Basic Principles, IEEE Trans. Ultrason. Ferroelec. Freq. Contr. 39, 555–566 (1992)CrossRefGoogle Scholar
  3. 3.
    M. Fink, Time Reversed Acoustics, Phys. Today 50, 34–40 (1997)CrossRefGoogle Scholar
  4. 4.
    D. R. Jackson, D. R. Dowling, Phase Conjugation in Underwater Acoustics, J. Acoust. Soc. Am. 89, 171 (1991)CrossRefADSGoogle Scholar
  5. 5.
    D. Cassereau, M. Fink, Time-reversal of ultrasonic fields, IEEE Trans. Ultrason. Ferroelec. Freq. Contr. 39, 579–592 (1992)CrossRefGoogle Scholar
  6. 6.
    J. de Rosny, M. Fink, submitted to Phys. Rev. Lett.Google Scholar
  7. 7.
    D. Cassereau, M. Fink, Time-reversal focusing through a plane interface separating two fluids, J. Acoust. Soc. Am. 96, 3145–3154 (1994)CrossRefADSGoogle Scholar
  8. 8.
    G. S. Kino, Acoustics Waves (Prentice Hall, Englewood Cliffs 1987)Google Scholar
  9. 9.
    A. Derode, P. Roux, M. Fink, Robust acoustic time-reversal with high order multiple scattering, Phys. Rev. Lett. 75, 4206–4209 (1995)CrossRefADSGoogle Scholar
  10. 10.
    R. Snieder, J. Scales, Time-reversed imaging as a diagnostic of wave and particle chaos, Phys. Rev. E 58, 5668–5675 (1998)CrossRefADSGoogle Scholar
  11. 11.
    A. Derode, A. Tourin, M. Fink, Limits of time-reversal focusing through multiple scattering: Long-range correlation, J. Acoust. Soc. Am. 107, 2987 (2000)CrossRefADSGoogle Scholar
  12. 12.
    A. Derode, A. Tourin, M. Fink, Ultrasonic pulse compression with one-bit time reversal through multiple scattering, J. Appl. Phys. 85, 6343–6352 (1999)CrossRefADSGoogle Scholar
  13. 13.
    P. Roux, B. Roman, M. Fink, Time-reversal in an ultrasonic waveguide, Appl. Phys. Lett. 70, 1811 (1997)CrossRefADSGoogle Scholar
  14. 14.
    A. Parvulescu, Matched signal (‘MESS’) processing by the ocean, J. Acoust. Soc. Am. 98, 943 (1995)CrossRefADSGoogle Scholar
  15. 15.
    A. Parvulescu, C. S. Clay, Reproductibility of signal transmissions in the ocean, Radio Elect. Eng. 29, 233 (1965)Google Scholar
  16. 16.
    C. Feuillade, C. S. Clay, Source imaging and sidelobe suppression using time-domain techniques in a shallow water waveguide, J. Acoust. Soc. Am. 92, 2165 (1992)CrossRefADSGoogle Scholar
  17. 17.
    W. A. Kupperman, W. S. Hodgkiss, H. C. Song, T. Akal, T. Ferla, D. Jackson, Phase conjugation in the ocean: experimental demonstration of an acoustic time-reversal mirror, J. Acoust. Soc. Am. 103, 25 (1998)CrossRefADSGoogle Scholar
  18. 18.
    W. Hodgkiss, H. Song, W. Kuperman, T. Akal, C. Ferla, D. Jackson, A long range and variable focus phase-conjugation experiment in shallow water, J. Acoust. Soc. Am. 105, 1597 (1999)CrossRefADSGoogle Scholar
  19. 19.
    C. Draeger, M. Fink, One channel time-reversal of elastic waves in a chaotic 2D-silicon cavity, Phys. Rev. Lett. 79, 407 (1997)CrossRefADSGoogle Scholar
  20. 20.
    C. Draeger, M. Fink, One-channel time-reversal in chaotic cavities: theoretical limits, J. Acoust. Soc. Am. 105, 618 (1999)CrossRefADSGoogle Scholar
  21. 21.
    C. Draeger, M. Fink, One-channel time-reversal in chaotic cavities: experimental results, J. Acoust. Soc. Am. 105, 611 (1999)CrossRefADSGoogle Scholar
  22. 22.
    M. V. Berry, in Les Houches 1981-Chaotic Behaviour of Deterministic Systems (North Holland, Amsterdam, 1983), p. 171Google Scholar
  23. 23.
    S. W. McDonald, A. N. Kaufman, Wave chaos in the stadium: Statistical properties of short-wave solutions of the Helmholtz equation, Phys. Rev. A 37, 3067 (1988)CrossRefADSMathSciNetGoogle Scholar
  24. 24.
    R. Weaver, J. Burkhardt, Weak Anderson localisation and enhanced backscatter in reverberation rooms and quantum dots, J. Acoust. Soc. Am. 96, 3186 (1994)CrossRefADSGoogle Scholar
  25. 25.
    C. Prada, F. Wu, M. Fink, The iterative time reversal mirror, J. Acoust. Soc. Am. 90, 1119 (1991)CrossRefADSGoogle Scholar
  26. 26.
    F. Wu, J.-L. Thomas, M. Fink, Time Reversal of Ultrasonic Fields—Part I: Experimental Results, IEEE Trans. Ultrason. Ferroelec. Freq. Contr. 39, 567 (1992)CrossRefGoogle Scholar
  27. 27.
    C. Dorme, M. Fink, Focusing in transmit-receive mode through inhomogeneous media: the time reversal matched filter approach, J. Acoust. Soc. Am. 98, 1155 (1995)CrossRefADSGoogle Scholar
  28. 28.
    C. Prada, M. Fink, Eigenmodes of the time reversal operator: a solution to selective focusing on two scatterers, Wave Motion 20, 151 (1994)zbMATHCrossRefMathSciNetGoogle Scholar
  29. 29.
    C. Prada, J.-L. Thomas, M. Fink, The iterative time-reversal process: analysis of the convergence, J. Acoust. Soc. Am. 97, 62 (1995)CrossRefADSGoogle Scholar
  30. 30.
    J.-L. Thomas, P. Roux, M. Fink, Inverse problem in wave scattering with an acoustic time reversal mirror, Phys. Rev. Lett. 72, 637–640 (1994)CrossRefADSGoogle Scholar
  31. 31.
    C. Prada, J.-L. Thomas, P. Roux, M. Fink, Acoustic time reversal and inverse scattering, in H. D. Bui, M. Tamaka (Ed.), Inverse problems in engineering mechanics, Proc. 2nd Int. Symp. Inv. Prob. at Paris, Nov 2-4, 1994 (Balkema, Rotterdam 1994) pp. 309–316Google Scholar
  32. 32.
    J.-L. Thomas, F. Wu, M. Fink, Time Reversal Mirror applied to litotripsy, Ultras. Imag. 18, 106 (1996)CrossRefGoogle Scholar
  33. 33.
    L. Crum, K. Hyninen, Sound Therapy, Phys. World, 28, August (1996) 39Google Scholar
  34. 34.
    H. Wang, E. S. Ebinni, M. O. Donell, C. A. Cain, Phase aberration correction and motion compensation for ultrasonic hyperthermia phased arrays: experimental results, IEEE Trans. Ultrason. Ferroelec. Freq. Contr. 41, 34 (1994)CrossRefGoogle Scholar
  35. 35.
    J.-L. Thomas, M. Fink, Ultrasonic beam focusing through tissue inhomo-geneities with a time reversal mirror: Application to transkull therapy, IEEE Trans. Ultrason. Ferroelec. Freq. Contr. 43, 1122 (1996)CrossRefGoogle Scholar
  36. 36.
    M. Tanter, J.-L. Thomas, M. Fink, Focusing and steering through absorbing and heterogeneous medium: application to ultrasonic propagation through the skull, J. Acoust. Soc. Am. 103, 2403 (1998)CrossRefADSGoogle Scholar
  37. 37.
    B. Beardsley, M. Peterson, J. D. Achenbach, A simple scheme for self-focusing of an array, J. Nondestr. Eval. 14, 169 (1995)CrossRefGoogle Scholar
  38. 38.
    N. Chakroun, M. Fink, F. Wu, Time reversal processing in non destructive testing, IEEE Trans. Ultrason. Ferroelec. Freq. Contr. 42, 1087 (1995)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2002

Authors and Affiliations

  • Mathias Fink
    • 1
  1. 1.Laboratoire Ondes et Acoustique, Ecole Supérieure de Physique et de Chimie Industrielle de la Ville de ParisUniversité Denis DiderotParisFrance

Personalised recommendations