Ocean Acoustics, Matched-Field Processing and Phase Conjugation

  • William A. Kuperman
  • Darrel R. Jackson
Part of the Topics in Applied Physics book series (TAP, volume 84)


This chapter treats ocean acoustics and various applications of signal processing, phase conjugation and tomography to ocean acoustics. Phase conjugation is related to the standard principles of passive signal processing and to the more recent demonstrations of time-reversal mirrors in the ocean. Here we will give an overview of the relevant physics of ocean acoustics, present a passive signal processing method called matched-field processing and then discuss the related concept and implementation of time-reversal methods in ocean acoustics.


Internal Wave Sound Speed Probe Pulse Sound Propagation Phase Conjugation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    J. Northrup, J. G. Colborn, Sofar Channel Axial Sound Speed and Depth in the Atlantic Ocean, J. Geophys. Res., 79, 5633 (1974)CrossRefADSGoogle Scholar
  2. 2.
    F. B. Jensen, W. A. Kuperman, M. B. Porter, H. Schmidt, Computational Ocean Acoustics (AIP, Woodbury, N.Y. 1994)Google Scholar
  3. 3.
    R. B. Evans, A coupled mode solution for acoustic propagation in a waveguide with stepwise depth variations of a penetrable bottom, J. Acoust. Soc. Am. 74, 188 (1983)zbMATHCrossRefADSGoogle Scholar
  4. 4.
    F. B. Jensen, W. A. Kuperman, Sound propagation in a wedge shaped ocean with a penetrable bottom, J. Acoust. Soc. Am. 67, 1564 (1980)CrossRefADSGoogle Scholar
  5. 5.
    A. B. Baggeroer, W. A. Kuperman, P. N. Mikhalevsky, An Overview of Matched Field Methods in Ocean Acoustics, IEEE J. Ocean Eng. 18, 401–424 (1993)CrossRefGoogle Scholar
  6. 6.
    H. Schmidt, A. B. Baggeroer, W. A. Kuperman, E. K. Scheer, Environmentally tolerant beamforming for high-resolution matched field processing: Deterministic mismatch, J. Acoust. Soc. Am. 88, 1851–1862 (1990)CrossRefADSGoogle Scholar
  7. 7.
    A. M. Richardson, L. W. Nolte, A posteriori probability source localization in an uncertain sound speed, deep ocean environment, J. Acoust. Soc. Am. 89, 2280–2284 (1991)CrossRefADSGoogle Scholar
  8. 8.
    J. L. Krolik, Matched field minimum variance beamforming in a random ocean channel, J. Acoust. Soc. Am. 92, 1408–1419 (1992)CrossRefADSGoogle Scholar
  9. 9.
    M. D. Collins, W. A. Kuperman, Focalization: Environmental focusing and source localization, J. Acoust. Soc. Am. 90, 1410–1422 (1991)CrossRefADSGoogle Scholar
  10. 10.
    B. Y. Zel’dovich, N. F. Pilipetsky, V. V. Shkunov, Principles of Phase Conjugation (Springer, Berlin 1985)Google Scholar
  11. 11.
    M. Fink, C. Prada, F. Wu, D. Cassereau, Self focusing with time reversal mirror in inhomogeneous media, Proc. IEEE Ultrason. Symp. 2, 681–686 (1989)CrossRefGoogle Scholar
  12. 12.
    M. Fink, Time Reversal Mirrors, In Acoust. Imaging 21, ed. by J. P. Jones (Plenum, New York 1995) p. 1–15Google Scholar
  13. 13.
    D. R. Jackson, D. R. Dowling, Phase conjugation in underwater acoustics, J. Acoust. Soc. Am. 89, 171–181 (1991)CrossRefADSGoogle Scholar
  14. 14.
    D. R. Dowling, D. R. Jackson, Narrow-band performance of phase-conjugate arrays in dynamic random media, J. Acoust. Soc. Am. 91, 3257–3277 (1992)CrossRefADSGoogle Scholar
  15. 15.
    D. R. Dowling, Phase-conjugate array focusing in a moving medium, J. Acoust. Soc. Am. 94, 1716–1718 (1993)CrossRefADSGoogle Scholar
  16. 16.
    D. R. Dowling, Acoustic pulse compression using passive phase-conjugate processing, J. Acoust. Soc. Am. 95, 1450–1458 (1994)CrossRefADSGoogle Scholar
  17. 17.
    A. Parvulescu, C. S. Clay, Reproducibility of signal transmissions in the ocean Radio Electr. Eng. 29, 223–228 (1965)CrossRefGoogle Scholar
  18. 18.
    A. Parvulescu, Matched-signal (Mess) processing by the ocean, J. Acoust. Soc. Am. 98, 943–960 (1995)CrossRefADSGoogle Scholar
  19. 19.
    W. A. Kuperman, William S. Hodgkiss, Hee Chun Song, T. Akal, C. Ferla, Darell Jackson, Phase Conjugation in the ocean: Experimental demonstration of an acoustic time-reversal mirror, J. Acoust. Soc. Am. 103, 25–40 (1998)CrossRefADSGoogle Scholar
  20. 20.
    H. C. Song, W. A. Kuperman, W. S. Hodgkiss, A time-reversal mirror with variable range focusing, J. Acoust. Soc. Am. 103, 3234–3240 (1998)CrossRefADSGoogle Scholar
  21. 21.
    W. S. Hodgkiss, H. C. Song, W. A. Kuperman, T. Akal, C. Ferla, D. Jackson, A long-range and variable focus phase-conjugation experiment in shallow water, J. Acoust. Soc. Am. 105, 1597–1604 (1999)CrossRefADSGoogle Scholar
  22. 22.
    P. Roux, H. C. Song, M. B. Porter, W. A. Kuperman, Application of parabolic equation method to medical ultrasonics, Wave Motion 31, 181–196 (2000)zbMATHCrossRefGoogle Scholar
  23. 23.
    R. K. Brienzo, W. S. Hodgkiss, Broadband matched field processing, J. Acoust. Soc. Am. 94, 2821–2831 (1993)CrossRefADSGoogle Scholar
  24. 24.
    P. Roux, B. Roman, M. Fink, Time-reversal in an ultrasonic waveguide, Appl. Phys. Lett. 70, 1811–1813 (1997)CrossRefADSGoogle Scholar
  25. 25.
    F. D. Tappert, The Parabolic Approximation Method, In Wave Propagation and Underwater Acoustics, ed. by J. B. Keller, J. S. Papadakis (Springer, Berlin, Heidelberg 1977)Google Scholar
  26. 26.
    D. J. Thomson, N. R. Chapman, A wide-angle split-step algorithm for the parabolic equation, J. Acoust. Soc. Am. 74, 1848 (1983)zbMATHCrossRefADSGoogle Scholar
  27. 27.
    M. D. Collins, Higher-order Padé approximations for accurate and stable elastic parabolic equations with applications to interface wave propagation, J. Acoust. Soc. Am. 89, 1050 (1991)CrossRefADSGoogle Scholar
  28. 28.
    B. E. McDonald, W. A. Kuperman, Time domain formulation for pulse propagation including nonlinear behavior at a caustic, J. Acoust. Soc. Am. 81, 1406 (1987)CrossRefADSGoogle Scholar
  29. 29.
    M. D. Collins, A split-step Padé solution for the parabolic equation method, J. Acoust. Soc. Am. 93, 1736 (1993)CrossRefADSGoogle Scholar
  30. 30.
    R. P. Porter, Generalized holography as a framework for solving inverse scattering and inverse source problems, Prog. Opt. XXVII (Elsevier, New York 1989)Google Scholar
  31. 31.
    D. Cassereau, M. Fink, Focusing with plane time-reversal mirrors: An efficient alternative to closed cavities, J. Acoust. Soc. Am. 94, 2373–2386 (1992)CrossRefADSGoogle Scholar
  32. 32.
    M. Siderius, D. R. Jackson, D. Rouseff, R. P. Porter, Multipath compensation in range dependent shallow water environments using a virtual receiver, J. Acoust. Soc. Am. 102, 3439–3449 (1997)CrossRefADSGoogle Scholar
  33. 33.
    D. R. Jackson, T. E. Ewart, The effect of internal waves on matched-field processing, J. Acoust. Soc. Am. 96, 2945–2955 (1994)CrossRefADSGoogle Scholar
  34. 34.
    S. R. Khosla, D. R. Dowling, Time-reversing array retrofocusing in simple dynamic underwater environments, J. Acoust. Soc. Am. 104, 3339–3350 (1998)CrossRefADSGoogle Scholar
  35. 35.
    B. J. Uscinski, D. E. Reeve, The effect of ocean inhomogeneities on array output, J. Acoust. Soc. Am. 87, 2527–2534 (1990)CrossRefADSGoogle Scholar
  36. 36.
    A. I. Saichev, Effect of compensating distortions due to scattering in an inhomogeneous medium by use of a reflector turning the front, Radio Eng. Electr. 27, 23–30 (1982)Google Scholar
  37. 37.
    A. Derode, P. Roux, M. Fink, Robust time reversal with high-order multiple scattering, Phys. Rev. Lett. 75, 4206–4209 (1995)CrossRefADSGoogle Scholar
  38. 38.
    W. A. Kuperman, F. Ingenito, Attenuation of the coherent component of sound propagating in shallow water with rough boundaries, J. Acoust. Soc. Am. 61, 1178–1187 (1977)CrossRefADSzbMATHGoogle Scholar
  39. 39.
    M. B. Porter, The KRAKEN normal mode program, SACLANTCEN Memorandum SM-245, La Spezia (1991)Google Scholar
  40. 40.
    W. Munk, Internal waves and small-scale processes, In Evolution of Physical Oceanography, ed. by B.A. Warren, C. Wunsch (MIT Press, Cambridge, MA 1981) pp. 264–291Google Scholar
  41. 41.
    R. Dashen, W. H. Munk, K. M. Watson, F. Zachariasen, In Sound Transmission Through a Fluctuating Ocean, ed. by S. M. Flatte (Cambridge Univ. Press, Cambridge 1979) pp. 44–61Google Scholar
  42. 42.
    F. S. Henyey, D. Rouseff, J. M. Grochocinski, S. A. Reynolds, K. L. Williams, T. E. Ewart, Effects of internal waves and turbulence on a horizontal aperture sonar, IEEE J. Ocean. Eng. 22, 270–280 (1997)CrossRefGoogle Scholar
  43. 43.
    D. Tielbürger, S. Finette, S. Wolf, Acoustic propagation through an internal wave field in a shallow water waveguide, J. Acoust. Soc. Am. 101, 789–808 (1997)CrossRefADSGoogle Scholar
  44. 44.
    K. B. Winters, E. A. D’Asaro, Direct simulation of internal wave energy transfer, J. Phys. Oceanogr. 27, 1937–1945 (1997)CrossRefADSGoogle Scholar
  45. 45.
    S. A. Reynolds (private communication) Analysis of oceanographic data obtained during the 1997 Mediterranean experimentGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2002

Authors and Affiliations

  • William A. Kuperman
    • 1
  • Darrel R. Jackson
    • 2
  1. 1.Scripps Institution of Oceanography, Marine Physical LaboratoryUniversity of CaliforniaSan Diego, La JollaUSA
  2. 2.Applied Physics Laboratory, College of Ocean and Fishery SciencesUniversity of WashingtonSeattleUSA

Personalised recommendations