Detection and Imaging in Complex Media with the D.O.R.T. Method

  • Claire Prada
Part of the Topics in Applied Physics book series (TAP, volume 84)


Acoustic waves are used for detection, localization and sometimes destruction of passive targets. In most fields of acoustics, arrays of transmitters and arrays of receivers are available, and if not synthetic aperture techniques can be used. With such arrays, a great amount of data can be collected, and the general problem is to extract the relevant information from these data to detect (or to form an image of) a scattering object. This problem appears in applications ranging from medical imaging to underwater acoustics and even in seismology. The D.O.R.T. method is a new approach to active detection and focusing of acoustic waves using arrays of transmitters and receivers. This method was derived from the theoretical study of iterative time-reversal mirrors. It consists essentially of the construction of the invariants in the time-reversal process. After explaining the basic theory of the D.O.R.T. method, several experimental results are shown: (a) detection and selective focusing through an inhomogeneous medium; (b) detection and focusing in a water waveguide, where high resolution is achieved by taking advantage of the multiple paths in the guide; (c) an analysis of scattering by a thin hollow cylinder, where the various components of the elastic waves circumnavigating in the shell are separated; and (d) in some cases the eigenvectors obtained at different frequencies can be combined to obtain the time-domain Green’s function of each scatterer.


Singular Value Decomposition Transfer Matrix Complex Medium Lamb Wave Impulse Response Function 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    M. Fink, C. Prada, F. Wu, Self focusing in inhomogeneous media with time reversal acoustic mirrors, Proc. IEEE Ultrason. Symp. 2, 681–686 (1989)CrossRefGoogle Scholar
  2. 2.
    M. Fink, Time Reversal Mirrors, J. Phys. D 26, 1333–1350 (1993)CrossRefADSMathSciNetGoogle Scholar
  3. 3.
    C. Prada, J.-L. Thomas, M. Fink, The iterative time reversal process: analysis of the convergence, J. Acoust. Soc. Am. 97, 62–71 (1995)CrossRefADSGoogle Scholar
  4. 4.
    C. Prada, M. Fink, Eigenmodes of the time reversal operator: a solution to selective focusing in multiple target media, Wave Motion 20, 151–163 (1994)zbMATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    C. Prada, S. Manneville, D. Spoliansky, M. Fink, Decomposition of the time reversal operator: detection and selective focusing on two scatterers, J. Acoust. Soc. Am. 99, 2067–2076 (1996)CrossRefADSGoogle Scholar
  6. 6.
    C. Prada, M. Tanter, M. Fink, Flaw detection in solid with the D.O.R.T. method, Proc. IEEE Ultrason. Symp. 2, 681–686 (1989)Google Scholar
  7. 7.
    G. Bienvenu, L. Kopp, Optimality of high resolution array processing using the eigensystem approach, IEEE Trans. Acoust. Speech Sig. Proc. 31 (1983)Google Scholar
  8. 8.
    R. O. Schmidt, Multiple Emitter Location and Signal Parameter Estimation, IEEE Trans. Ant. and Prop. AP-34, 276–281 (1986)CrossRefADSGoogle Scholar
  9. 9.
    B. Baggeroer, W. A. Kuperman, P. N. Mikhalevsky, An overview of matched field methods in ocean acoustics, IEEE J. Ocean. Eng. 18, 401–424 (1993)CrossRefGoogle Scholar
  10. 10.
    Parvulescu, Matched-signal (‘MESS’) processing by the ocean, J. Acoust. Soc. Am. 98, 943–960 (1995)CrossRefADSGoogle Scholar
  11. 11.
    C. S. Clay, Optimum time domain signal transmission and source location in a waveguide, J. Acoust. Soc. Am. 81, 660–664 (1987)CrossRefADSGoogle Scholar
  12. 12.
    S. Li, C. S. Clay, Optimum time domain signal transmission and source location in a waveguide: Experiments in an ideal wedge waveguide, J. Acoust. Soc. Am. 82, 1409–1417 (1987)CrossRefADSGoogle Scholar
  13. 13.
    D. R. Jackson, D. R. Dowling, Phase conjugation in underwater acoustics, J. Acoust. Soc. Am. 89, 171–181 (1991)CrossRefADSGoogle Scholar
  14. 14.
    P. Roux, B. Roman, M. Fink, Time-reversal in an ultrasonic waveguide, Appl. Phys. Lett. 70, 1811–1813 (1997)CrossRefADSGoogle Scholar
  15. 15.
    W. A. Kuperman, W. S. Hodgkiss, H. C. Song, T. Akal, C. Ferla, D. R. Jackson, Phase conjugation in the ocean: Experimental demonstration of an acoustic time-reversal mirror, J. Acoust. Soc. Am. 103, 25–40 (1998)CrossRefADSGoogle Scholar
  16. 16.
    H. C. Song, W. A. Kuperman, W. S. Hodgkiss, Iterative time reversal in the ocean, J. Acoust. Soc. Am. 105, 3176–3184 (1999)CrossRefADSGoogle Scholar
  17. 17.
    W. S. Hodgkiss, H. C. Song, W. A. Kuperman, A long-range and variable focus phase-conjugation experiment in shallow water, J. Acoust. Soc. Am. 105, 1597–1602 (1999)CrossRefADSGoogle Scholar
  18. 18.
    N. Mordant, C. Prada, M. Fink, Highly resolved detection and selective focusing in a waveguide using the D.O.R.T. method, J. Acoust. Soc. Am. 105, 2634–2642 (1999)CrossRefADSGoogle Scholar
  19. 19.
    J.-L. Thomas, P. Roux, M. Fink, Inverse scattering analysis with an acoustic time-reversal mirror, Phys. Rev. Lett. 72, 637–640 (1994)CrossRefADSGoogle Scholar
  20. 20.
    C. Prada, J.-L. Thomas, P. Roux, M. Fink, Acoustic time reversal and inverse scattering, Proc. Int. Symp. Inv. Prob. (1994) 309–316Google Scholar
  21. 21.
    C. Prada, M. Fink, Separation of interfering acoustic scattered signals using the invariant of the time-reversal operator. Application to Lamb waves characterization, J. Acoust. Soc. Am. 104, 801–807 (1998)CrossRefADSGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2002

Authors and Affiliations

  • Claire Prada
    • 1
  1. 1.Laboratoire Ondes et AcoustiqueESPCIParis, Cedex 05France

Personalised recommendations