Advertisement

Seismic Anisotropy Tomography

  • Jean-Paul Montagner
Chapter
Part of the Topics in Applied Physics book series (TAP, volume 84)

Abstract

The main breakthrough in seismology during the last ten years is related to the emergence and development of more and more sophisticated 3-dimensional imaging techniques, usually named seismic tomography, from the local scale up to global scale of the Earth. The progress has been made possible by the rapid developments in seismic instrumentation, in electronics, and by the extensive use of massive computational facilities. However, in contrast to usual experiments in physics, geophysicists cannot control all the conditions and must use natural sources. Consequently, most global tomographic models suffer severe limitations due to imperfect data coverage and theoretical approximations. It is usually assumed that the propagating elastic medium is isotropic, which is shown to be a poor approximation. We show in this paper how to take account of the anisotropy of the Earth’s materials. The consequence is that, by including other geological constraints, we are able to map not only the 3-dimensional temperature heterogeneities but also the flow field within the convecting mantle. The complete tomographic technique, which includes the resolution of a forward problem and of an inverse problem, is described. It is important to emphasize the fact that in order to check the reliability of a tomographic model it is necessary to calculate the errors and the resolution associated with the model by considering the structure of the data space (errors and correlations) and the parameter space (a posteriori errors, covariance function, resolution). However, despite the increasing quality of seismograms provided by modern digital networks (GEOSCOPE, IRIS, etc.), the lateral resolution at the global scale is limited to about 1000 km and the installation of ocean-bottom observatories constitutes a new challenge for the next century. The next step is to apply to data recent theoretical developments in order to use all the information provided by seismic waveforms. Then, we will receive new insight into anisotropic and anelastic parameters within the Earth, and also within other solid materials.

Keywords

Surface Wave Rayleigh Wave Seismic Velocity Love Wave Body Wave 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    L. Knopoff, Observation and inversion of surface wave inversion, Tectono-physics 13, 497–519 (1972)CrossRefADSGoogle Scholar
  2. 2.
    J. H. Woodhouse, A. M. Dziewonski, Mapping the upper mantle: Three dimensional modelling of Earth structure by inversion of seismic waveforms, J. Geophys. Res. 89, 5953–5986 (1984)ADSCrossRefGoogle Scholar
  3. 3.
    A. M. Dziewonski, Mapping the lower mantle: Determination of lateral heterogeneity in P velocity up to degree and order 6, J. Geophys. Res. 89, 5929–5952 (1984)ADSCrossRefGoogle Scholar
  4. 4.
    I. Nakanishi, D. L. Anderson, Measurement of mantle wave velocities and inversion for lateral heterogeneity and anisotropy, II. Analysis by the single station method, Geophys. J. R. Astron. Soc. 78, 573–618 (1984)ADSGoogle Scholar
  5. 5.
    H.-C. Nataf, I. Nakanishi, D. L. Anderson, Anisotropy and shear velocity heterogeneities in the upper mantle, Geophys. Res. Lett. 11, 109–112 (1984)ADSCrossRefGoogle Scholar
  6. 6.
    H.-C. Nataf, I. Nakanishi, D. L. Anderson, Measurement of mantle wave velocities and inversion for lateral heterogeneity and anisotropy, III. Inversion, J. Geophys. Res. 91, 7261–7307 (1986)ADSCrossRefGoogle Scholar
  7. 7.
    D. Agnew, J. Berger, R. Buland, W. Farrell, F. Gilbert, International deployment of accelerometers: A network of very long period seismology, EOS, Trans. Am. Geophys. Union 57, 180–188 (1976)Google Scholar
  8. 8.
    J. Peterson, H. M. Butler, L. G. Holcomb, C. R. Hutt, The Seismic Research Observatory, Bull. Seism. Soc. Am. 66, 2049–2068 (1977)Google Scholar
  9. 9.
    B. Romanowicz, M. Cara, J. F. Fels, D. Rouland, GEOSCOPE: a French initiative in long period, three component, global seismic networks, EOS, Trans. Am. Geophys. Union 65, 753–754 (1984)Google Scholar
  10. 10.
    S. W. Smith, IRIS, a program for the next decade, EOS, Trans. Am. Geophys. Union 67, 213–219 (1986)Google Scholar
  11. 11.
    J.-P. Montagner, Surface waves on a global scale — Influence of anisotropy and anelasticity, In Seismic Modeling of the Earth’s Structure, ed. by E. Boschi, G. Ekström, A. Morelli, Summer School of Erice, (Bologna 1996) p. 81–148Google Scholar
  12. 12.
    J.-P. Montagner, First results on the three dimensional structure of the Indian Ocean inferred from long period surface waves, Geophys. Res. Lett. 13, 315–318, (1986)ADSCrossRefGoogle Scholar
  13. 13.
    J.-P. Montagner, T. Tanimoto, Global anisotropy in the upper mantle inferred from the regionalization of phase velocities, J. Geophys. Res. 95, 4797–4819 (1990)ADSCrossRefGoogle Scholar
  14. 14.
    J.-P. Montagner, T. Tanimoto, Global upper mantle tomography of seismic velocities and anisotropies, J. Geophys. Res. 96, 20 337–20 351 (1991)ADSCrossRefGoogle Scholar
  15. 15.
    T. Tanimoto, Waveform inversion of Love waves: The Born Seismogram approach, Geophys. J. R. Astron. 78, 641–660 (1984)ADSGoogle Scholar
  16. 16.
    G. Roult, B. Romanowicz, J.-P. Montagner, 3D upper mantle shear velocity and attenuation from fundamental mode free oscillation data, Geophys. J. Int. 101, 61–80 (1990)CrossRefADSGoogle Scholar
  17. 17.
    B. Romanowicz, The upper mantle degree two: Constraints and inferences from global mantle wave attenuation measurements, J. Geophys. Res. 95, 11051–11071 (1990)ADSCrossRefGoogle Scholar
  18. 18.
    T. Tanimoto, Waveform inversion of mantle Love waves: The Born seismogram approach, Geophys. J. R. Astron. Soc. 78, 641–660 (1984)ADSGoogle Scholar
  19. 19.
    J. K. Wong, Upper mantle heterogeneity from phase and amplitude data of mantle waves, PhD Thesis, Harvard University, Cambridge MA (1989)Google Scholar
  20. 20.
    R. Snieder, Large-scale waveform inversions of surface waves for lateral heterogeneity, 1. Theory and numerical examples, J. Geophys. Res. 93, 12055–12066 (1988)ADSCrossRefGoogle Scholar
  21. 21.
    R. Snieder, Large-scale waveform inversions of surface waves for lateral heterogeneity, 2. Application to surface waves in Europe and the Mediterranean, J. Geophys. Res. 93, 12 067–12 080 (1988)ADSGoogle Scholar
  22. 22.
    E. Wielandt, G. Streickeisen, The leaf-spring seismometer: design and performances, Bull. Seism. Soc. Am. 72, 2349–2367 (1982)Google Scholar
  23. 23.
    S. Cacho, Etude et Réalisation d’un sismomètre très large bande, 3 axes, qualifié spatial, Thèse de l’Université Paris VII (1996)Google Scholar
  24. 24.
    P. Lognonné, J. Gagnepain-Beyneix, W. B. Banerdt, S. Cacho, J.-F. Karczewski, An ultra-broadband seismometer in InterMarsnet, Planet. Space Sci. 44, 1237–1249 (1996)ADSCrossRefGoogle Scholar
  25. 25.
    J.-P. Montagner, P. Lognonné, R. Beauduin, G. Roult, J.-F. Karczewski, E. Stutzmann, Towards multiscale and multiparameter networks for the next century: The French efforts, Phys. Earth Planet. Int. 108, 155–174 (1998)ADSCrossRefGoogle Scholar
  26. 26.
    J. Peterson, Observation and modeling of background seismic noise, I. S. Geol. Surv. Open-file report 93-222, Albuquerque (1993)Google Scholar
  27. 27.
    J.-P. Montagner, B. Romanowicz, J. F. Karczewski, A first step towards an Oceanic Geophysical observatory, EOS, Trans. Am. Geophys. Union 75, 150–154 (1994)ADSCrossRefGoogle Scholar
  28. 28.
    K. Suyehiro, T. Kanazawa, N. Hirata, M. Shinohara, H. Kinoshita, Broadband downhole digital seismometer experiment at site 794: a technical paper, Proc. ODP, Sc. Results, (1992) p. 127–128Google Scholar
  29. 29.
    J. H. Woodhouse, F. A. Dahlen, The effect of a general aspherical perturbation on the free oscillations of the Earth, Geophys. J. R. Astron. Soc. 53, 335–354 (1978)zbMATHADSGoogle Scholar
  30. 30.
    A. R. Edmonds, Angular Momentum and Quantum Mechanics (Priceton University Press, Priceton NJ, 1960)Google Scholar
  31. 31.
    J.-P. Montagner, Where can seismic anisotropy be detected in the Earth’s mantle? In boundary layers..., Pure Appl. Geophys. 151, 223–256 (1998)ADSCrossRefGoogle Scholar
  32. 32.
    L. Peselnick, A. Nicolas, P. R. Stevenson, Velocity anisotropy in a mantle peridotite from Ivrea zone: Application to upper mantle anisotropy, J. Geophys. Res. 79, 1175–1182 (1974)ADSCrossRefGoogle Scholar
  33. 33.
    D. L. Anderson, Theory of the Earth (Blackwell, Oxford 1989)Google Scholar
  34. 34.
    V. Babuska, M. Cara, Seismic Anisotropy in the Earth (Kluwer Academic, Dordrecht 1991)Google Scholar
  35. 35.
    A. E. Ringwood, Composition and petrology of the Earth’s mantle (McGraw-Hill, New York 1975) pp. 618Google Scholar
  36. 36.
    N. I. Christensen, S. Lundquist, Pyroxene orientation within the upper mantle, Bull. Geol. Soc. Am. 93, 279–288 (1982)CrossRefGoogle Scholar
  37. 37.
    J.-P. Montagner, D. L. Anderson, Constraints on elastic combinations inferred from petrological models, Phys. Earth Planet. Int. 54, 82–105 (1989)ADSCrossRefGoogle Scholar
  38. 38.
    D. L. Anderson, J. D. Bass, Mineralogy and composition of the upper mantle, Geophys. Res. Lett. 11, 637–640 (1984)ADSCrossRefGoogle Scholar
  39. 39.
    D. L. Anderson, J. D. Bass, Transition region of the Earth’s upper mantle, Nature 320, 321–328 (1986)ADSCrossRefGoogle Scholar
  40. 40.
    L. Peselnick, A. Nicolas, Seismic anisotropy in an ophiolite peridotite. Application to oceanic upper mantle, J. Geophys. Res. 83, 1227–1235 (1978)ADSCrossRefGoogle Scholar
  41. 41.
    A. Nicolas, Why fast polarization directions of SKS seismic waves are parallel to mountain belts? Phys. Earth Planet. Int. 78, 337–342 (1993)ADSCrossRefMathSciNetGoogle Scholar
  42. 42.
    A. Vauchez, A. Nicolas, Mountain building: strike-parallel motion and mantle anisotropy, Tectonophysics 185, 183–191 (1991)CrossRefADSGoogle Scholar
  43. 43.
    N. M. Ribe, Seismic anisotropy and mantle flow, J. Geophys. Res. 94, 4213–4223 (1989)ADSCrossRefGoogle Scholar
  44. 44.
    D. L. Anderson, Elastic wave propagation in layered anisotropic media, J. Geophys. Res. 66, 2953–2963 (1961)ADSMathSciNetCrossRefGoogle Scholar
  45. 45.
    K. Aki, K. Kaminuma, Phase velocity of Love waves in Japan (part 1): Love waves from the Aleutian shock of March 1957, Bull. Earthq. Res. Inst. 41, 243–259 (1963)Google Scholar
  46. 46.
    H. Hess, Seismic anisotropy of the uppermost mantle under the oceans, Nature 203, 629–631 (1964)ADSCrossRefGoogle Scholar
  47. 47.
    L. P. Vinnik, G. L. Kosarev, L. I. Makeyeva, Anisotropiya litosfery po nablyu-deniyam voln SKS and SKKS, Dokl. Akad. Nauk USSR 278, 1335–1339 (1984)Google Scholar
  48. 48.
    L. P. Vinnik, R. Kind, G. L. Kosarev, L. I. Makeyeva, Azimuthal Anisotropy in the lithosphere from observations of long-period S-waves, Geophys. J. Int. 99, 549–559 (1989)CrossRefADSGoogle Scholar
  49. 49.
    L. P. Vinnik, V. Farra, B. Romanowicz, Azimuthal anisotropy in the earth from observations of SKS at GEOSCOPE and NARS broadband stations, Bull. Seism. Soc. Am. 79, 1542–1558 (1989)Google Scholar
  50. 50.
    L. Vinnik, L. I. Makayeva, A. Milev, A. Y. Usenko, Global patterns of azimuthal anisotropy and deformations in the continental mantle, Geophys. J. Int. 111, 433–447 (1992)ADSCrossRefGoogle Scholar
  51. 51.
    M. Ando, ScS polarization anisotropy around the Pacific Ocean, J. Phys. Earth 32, 179–196 (1984)Google Scholar
  52. 52.
    J. Fukao, Evidencec from Core-reflected Shear waves for Anisotropy in the Earth’s mantle, Nature 309, 695–698 (1984)ADSCrossRefGoogle Scholar
  53. 53.
    M. Ando, Y. Ishikawa, F. Yamazaki, Shear wave polarization anisotropy in the upper mantle beneath Honshu, Japan, J. Geophys. Res. 88, 5850–5864 (1983)ADSCrossRefGoogle Scholar
  54. 54.
    J. R. Bowman, M. Ando, Shear-wave splitting in the upper mantle wedge above the Tonga subduction zone, Geophys. J. R. Astron. Soc. 88, 25–41 (1987)Google Scholar
  55. 55.
    P. G. Silver, W. W. Chan, Implications for continental structure and evolution from seismic anisotropy, Nature 335, 34–39 (1988)ADSCrossRefGoogle Scholar
  56. 56.
    V. Ansel, H.C Nataf, Anisotropy beneath 9 stations of the Geoscope broadband network as deduced from shear wave splitting, Geophys. Res. Lett. 16, 409–412 (1989)ADSCrossRefGoogle Scholar
  57. 57.
    P. G. Silver, Seismic anisotropy beneath the continents: Probing the depths of geology, Annu. Rev. Earth Planet. Sci. 24, 385–432 (1996)ADSCrossRefGoogle Scholar
  58. 58.
    A. Levshin, L. Ratnikova, Apparent anisotropy in inhomogeneous media, Geophys. J. R. Astron. Soc. 76, 65–69 (1984)Google Scholar
  59. 59.
    D. W. Forsyth, The early structural evolution and anisotropy of the oceanic upper mantle, Geophys. J. R. Astron. Soc. 43, 103–162 (1975)Google Scholar
  60. 60.
    B. J. Mitchell, G.-K. Yu, Surface wave dispersion, regionalized velocity models and anisotropy of the Pacific crust and upper mantle, Geophys. J. R. Astron. Soc. 63, 497–514 (1980)Google Scholar
  61. 61.
    J.-P. Montagner, Seismic anisotropy of the Pacific Ocean inferred from long-period surface wave dispersion, Phys. Earth Planet. Int. 38, 28–50 (1985)ADSCrossRefGoogle Scholar
  62. 62.
    T. Tanimoto, D. L. Anderson, Lateral heterogeneity and azimuthal anisotropy of the upper mantle: Love and Rayleigh waves 100–250 s, J. Geophys. Res. 90, 1842–1858 (1985)ADSCrossRefGoogle Scholar
  63. 63.
    E. Debayle, J.-J. Lévêque, Upper mantle heterogeneities in the Indian Ocean froml waveform inversion, Geophys. Res. Lett. 24, 245–248 (1997)ADSCrossRefGoogle Scholar
  64. 64.
    D. Suetsugu, I. Nakanishi, Regional and azimuthal dependence of phase velocities of mantle Rayleigh waves in the Pacific Ocean, Phys. Earth Planet. Int. 47, 230–245 (1987)ADSCrossRefGoogle Scholar
  65. 65.
    C. E. Nishimura, D. W. Forsyth, The anisotropic structure of the upper mantle in the Pacific, Geophys. J. 96, 203–229 (1989)ADSCrossRefGoogle Scholar
  66. 66.
    G. Silveira, E. Stutzmann, J.-P. Montagner and L. Mendes-Victor, Anisotropic tomography of the Atlantic Ocean from Rayleigh surface waves, Phys. Earth Planet. Int. 106, 259–275 (1998)ADSCrossRefGoogle Scholar
  67. 67.
    O. Hadiouche, N. Jobert and J. P. Montagner, Anisotropy of the African continent inferred from surface waves, Phys. Earth Planet. Int. 58, 61–81 (1989)ADSCrossRefGoogle Scholar
  68. 68.
    D.-A. Griot, J.-P. Montagner, P. Tapponnier, Surface wave phase velocity and azimuthal anisotropy in Central Asia, J. Geophys. Res. 103, 21215–21232 (1998)ADSCrossRefGoogle Scholar
  69. 69.
    D.-A. Griot, J.-P. Montagner, P. Tapponnier, Heterogeneous versus homogeneous strain in Central Asia, Geophys. Res. Lett. 25, 1447–1450 (1998)ADSCrossRefGoogle Scholar
  70. 70.
    J. J. Lévêque, M. Cara, Inversion of multimode surface wave data: evidence for sub-lithospheric anisotropy, Geophys. J. R. Astron. Soc. 83, 753–773 (1985)Google Scholar
  71. 71.
    M. Cara, J.-J. Lévêque, Anisotropy of the asthenosphere: The higher mode data of the Pacific revisited, Geophys. Res. Lett. 15, 205–208 (1988)ADSCrossRefGoogle Scholar
  72. 72.
    J.-P. Montagner, H.-C. Nataf, On the inversion of the azimuthal anisotropy of surface waves, J. Geophys. Res. 91, 511–520 (1986)ADSCrossRefGoogle Scholar
  73. 73.
    S. Crampin, An introduction to wave propagation in anisotropic media, Geophys. J. R. Astron. Soc. 76, 17–28 (1984)Google Scholar
  74. 74.
    J.-P. Montagner, N. Jobert, Investigation of upper mantle structure under young regions of the Sout-East Pacific using long-period Rayleigh waves, Phys. Earth Planet. Int. 27, 206–222 (1981)ADSCrossRefGoogle Scholar
  75. 75.
    M. L. Smith, F. A. Dahlen, Correction to ‘The azimuthal dependence of Love and Rayleigh wave propagation in a slightly anisotropic medium’, J. Geophys. Res. 80, 1923 (1975)ADSCrossRefGoogle Scholar
  76. 76.
    G. Laske, G. Masters, Surface-wave polarization data and global anisotropic structure, Geophys. J. Int. 132, 508–520 (1998)ADSCrossRefGoogle Scholar
  77. 77.
    E. W. Larson, J. Tromp, G. Ekström, Effects of slight anisotropy on surface waves, Geophys. J. Int. 132, 654–666 (1998)ADSCrossRefGoogle Scholar
  78. 78.
    J.-P. Montagner, D.-A. Griot, J. Lavé, How to relate body wave and surface wave anisotropies?, J. Geophys. Res. 105, 19 015–19 027 (2000)ADSCrossRefGoogle Scholar
  79. 79.
    J.-P. Montagner, Surface waves on a global scale — Influence of anisotropy and anelasticity, In Seismic Modeling of the Earth’s Structure, ed. by E. Boschi, G. Ekström, A. Morelli, Summer School of Erice, (Bologna 1996) p. 81–148Google Scholar
  80. 80.
    J. Bass, D. L. Anderson, Composition of the upper mantle: Geophysical tests of two petrological models, Geophys. Res. Lett. 11, 237–240 (1984)ADSCrossRefGoogle Scholar
  81. 81.
    J.-P. Montagner, D. L. Anderson, Constrained reference mantle model, Phys. Earth Planet. Int. 58, 205–227 (1989)ADSCrossRefGoogle Scholar
  82. 82.
    J. W. Schlue, L. Knopoff, Shearwave Polarization in the Pacific Ocean, Geophys. J. R. Astron. Soc. 49, 145–165, (1977)Google Scholar
  83. 83.
    A. M. Dziewonski, D. L. Anderson, Preliminary Reference Earth Model, Phys. Earth Planet. Int. 25, 297–356 (1981)ADSCrossRefGoogle Scholar
  84. 84.
    D. L. Anderson, A. M. Dziewonski, Upper mantle anisotropy: Evidence from fre oscillations, Geophys. J. R. Astron. Soc. 69, 383–404 (1982)ADSGoogle Scholar
  85. 85.
    G. Nolet, Higher Rayleigh modes in Western Europe, Geophys. Res. Lett. 2, 60–62 (1975)ADSCrossRefGoogle Scholar
  86. 86.
    M. Cara, Regional variations of Rayleigh-mode velocities: a spatial filtering method, Geophys. J. R. Astron. Soc. 57, 649–670 (1978)Google Scholar
  87. 87.
    E. Okal, B.-G. Jo, stacking investigation of higher-order mantle Rayleigh waves, Geophys. Res. Lett. 12, 421–424 (1985)ADSCrossRefGoogle Scholar
  88. 88.
    A. L. Lerner-Lam, T. H. Jordan, Earth structure from fundamental and higher-mode waveform analysis, Geophys. J. R. Astron. Soc. 75, 759–797 (1983)Google Scholar
  89. 89.
    G. Nolet, Partitioned waveform inversion and two-dimensional structure under the network of autonomously recording seismographs, J. Geophys. Res. 95, 8499–8512 (1990)ADSCrossRefGoogle Scholar
  90. 90.
    J. J. Lévêque, M. Cara, D. Rouland, Waveform inversion of surface-wave data: a new tool for systematic investigation of upper mantle structures, Geophys. J. Int. 104, 565–581 (1991)CrossRefADSGoogle Scholar
  91. 91.
    E. Stutzmann, J. P. Montagner, Tomography of the transition zone from the inversion of higher-mode surface waves, Phys. Earth Planet. Int. 86, 99–116 (1994)ADSCrossRefGoogle Scholar
  92. 92.
    H. J. Van Heijst, J. Woodhouse, Measuring surface-wave overtone phase velocities using a mode-branch stripping technique, Geophys. J. Int. 131, 209–230 (1997)CrossRefADSGoogle Scholar
  93. 93.
    R. Snieder, Surface wave inversions on a regional scale, In Seismic Modeling of Earth Structure, ed. by E. Boschi, G. Ekström, A. Morelli, Summer School of Erice, (Bologna 1996) p. 149–182Google Scholar
  94. 94.
    G. E. Backus, F. Gilbert, Numerical applications of a formalism for geophysical inverse problems, Geophys. J. R. Astron. Soc. 13, 247–276 (1967)ADSGoogle Scholar
  95. 95.
    G. E. Backus, J. F. Gilbert, The resolving power of gross earth data, Geophys. J. R. Astron. Soc. 16, 169–205 (1968)zbMATHADSGoogle Scholar
  96. 96.
    G. E. Backus, F. Gilbert, Uniqueness in the inversion of inaccurate gross earth data, Philos. Trans. R. Soc. Lond. Ser. A 266, 123–192 (1970)ADSCrossRefMathSciNetGoogle Scholar
  97. 97.
    A. Tarantola, B. Valette, Generalized non-linear inverse problems solved using the least squares criterion, Rev. Geophys. Space Phys. 20, 219–232 (1982)ADSMathSciNetCrossRefGoogle Scholar
  98. 98.
    T. Tanimoto, The Backus-Gilbert approach to the three-dimensional structure in the upper mantle, 1. Lateral variation of surface wave phase velocity with its error and resolution, Geophys. J. R. Astron. Soc. 82, 105–123 (1985)Google Scholar
  99. 99.
    A. M. Dziewonski, J. H. Woodhouse, Global images of the Earth’s interior, Science 236, 37–48 (1987)ADSCrossRefGoogle Scholar
  100. 100.
    R. A. Fisher, Dispersion on a sphere, Proc. R. Soc. London A 217, 295 (1953)zbMATHADSCrossRefGoogle Scholar
  101. 101.
    J.-P. Montagner, Regional three-dimensional structures using long-period surface waves, Ann. Geophys. 4, B3, 283–294 (1986)Google Scholar
  102. 102.
    P. Ho-Liu, J.-P. Montagner, H. Kanamori, Comparison of iterative back-projection inversion and generalized inversion without blocks: Case studies in Attenuation tomography, Geophys. J. 97, 19–29 (1989)ADSCrossRefGoogle Scholar
  103. 103.
    J.-P. Montagner, N. Jobert, Vectorial Tomography. II: Application to the Indian Ocean, Geophys. J. R. Astron. Soc. 94, 309–344 (1988)Google Scholar
  104. 104.
    J.-P. Montagner, H.-C. Nataf, Vectorial Tomography. I: Theory, Geophys. J. R. Astron. Soc. 94, 295–307 (1988)zbMATHGoogle Scholar
  105. 105.
    T. Tanimoto, Long-wavelength S-wave velocity structure throughout the mantle, Geophys. J. Int. 100, 327–336 (1990)CrossRefADSGoogle Scholar
  106. 106.
    B. H. Hager, R. W. Clayton, M. A. Richards, R. P. Comer, A. M. Dziewonski, Lower mantle heterogeneity, dynamic topography and the geoid, Nature 313, 541–545 (1985)ADSCrossRefGoogle Scholar
  107. 107.
    J.-P. Montagner, What can seismology tell us about mantle convection? Rev. Geophys. 32, 115–137 (1994)ADSCrossRefGoogle Scholar
  108. 108.
    J. B. Minster, T. H. Jordan, Present-day plate motions, J. Geophys. Res. 83, 5331–5354 (1978)ADSCrossRefGoogle Scholar
  109. 109.
    V. Babuska, J.-P. Montagner, J. Plomerova, N. Girardin, Age-dependent large-scale fabric of the mantle lithosphere as derived from surface-wave velocity anisotropy, Pure Appl. Geophys. 151, 257–280 (1998)ADSCrossRefGoogle Scholar
  110. 110.
    G. Masters, T. H. Jordan, P. G. Silver, F. Gilbert, Aspherical Earth structure from fundamental spheroidal-mode data, Nature 298, 609–613 (1982)ADSCrossRefGoogle Scholar
  111. 111.
    J.-P. Montagner, B. Romanowicz, Degrees 2, 4, 6 inferred from seismic tomography, Geophys. Res. Lett. 20, 631–634 (1993)ADSCrossRefGoogle Scholar
  112. 112.
    A. Cazenave, A. Souriau, K. Dominh, Global coupling of Earth surface topography with hotspots geoid and mantle heterogeneities, Nature 340, 54–57 (1989)ADSCrossRefzbMATHGoogle Scholar
  113. 113.
    M. A. Richards, B. H. Hager, The Earth’s geoid and the large scale structure of mantle convection, In The Physics of the Planets, ed. by S.J. Runcorn (Wiley, New York 1988) p. 247–271Google Scholar
  114. 114.
    L. Vinnik, J.-P. Montagner, Shear wave splitting in the mantle from Ps phases, Geophys. Res. Lett. 23, 2449–2452 (1996)ADSCrossRefGoogle Scholar
  115. 115.
    Y. Capdeville, E. Stutzmann, J.-P. Montagner, Effect of a plume on long period surface waves computed with normal mode coupling, Phys. Earth Planet. Int. 119, 57–74 (2000)ADSCrossRefGoogle Scholar
  116. 116.
    J. Ying, H. C. Nataf, Detection of mantle plume in the lower mantle by deffrection tomography, Earth Planet. Sci. Lett. 159, 87–98 (1998)ADSCrossRefGoogle Scholar
  117. 117.
    E. Hunter, J. L. Thirst, J.-P. Montagner, Global correlations of ocean ridge basalt chemistry with seismic tomographic images, Nature 364, 225–228 (1993)ADSCrossRefGoogle Scholar
  118. 118.
    F. Birch, Elasticity and constitution of the Earth’s interior, J. Geophys. Res. 57, 227–228, (1952)ADSCrossRefGoogle Scholar
  119. 119.
    P. G. Silver, W. W. Chan, Shear wave splitting and subcontinental mantle deformation, J. Geophys. Res. 96, 16429–16454 (1991)ADSCrossRefGoogle Scholar
  120. 120.
    J.-P. Avouac, P. Tapponnier, Kinematic model of active deformation in central Asia, Geophys. Res. Lett. 20, 895–898 (1993)ADSCrossRefGoogle Scholar
  121. 121.
    P. England, G. Houseman, Finite strain calculations of continental deformation, 2. comparison with the India-Asia collision zone, J. Geophys. Res. 91, 3664–3676 (1986)ADSCrossRefGoogle Scholar
  122. 122.
    E. Clévédé, P. Lognonné, Fréchet derivatives of coupled seismograms with to an anelastic rotating Earth, Geophys. J. Int. 124, 456–482 (1996)ADSCrossRefGoogle Scholar
  123. 123.
    L. Peselnick, A. Nicolas, P. R. Stevenson, Velocity anisotropy in a mantle peridotite from Ivrea zone: Application to upper mantle anisotropy, J. Geophys. Res. 79, 1175–1182 (1974)ADSCrossRefGoogle Scholar
  124. 124.
    M. L. Smith, F. A. Dahlen, The azimuthal dependence of Love and Rayleigh wave propagation in a slightly anisotropic medium, J. Geophys. Res. 78, 3321–3333 (1973)ADSCrossRefGoogle Scholar
  125. 125.
    Y. Yu, J. Park, Anisotropy and coupled long-period surface waves, Geophys. J. Int. 114, 473–489 (1993)CrossRefADSGoogle Scholar
  126. 126.
    H. Takeuchi, M. Saito, Seismic surface waves, Methods Comput. Phys. 11, 217–295 (1972)Google Scholar
  127. 127.
    R. D. Van der Hilst, H. Karason, Compositional heterogeneity in the bottom 1000 km of the Earth’s mantle: Toward a hybrid convection model, Science 283, 1885–1888 (1999)ADSCrossRefGoogle Scholar
  128. 128.
    G. Barruol, D. Mainprice, A quantitative evaluation of the contribution of crustal rocks to the shear-wave splitting of teleseismic SKS waves, Phys. Earth Planet. Int. 78, 281–300 (1993)ADSCrossRefGoogle Scholar
  129. 129.
    B. Dost, Upper mantle structure under western Europe from fundamental and higher mode surface waves using the NARS array, Geophys. J. R. Astron. Soc. 100, 131–151 (1990)Google Scholar
  130. 130.
    G. Ekström, A. M. Dziewonski, The unique anisotorpy of the Pacific upper mantle, Nature 394, 168–172 (1998)ADSCrossRefGoogle Scholar
  131. 131.
    T. Lay, T. C. Wallace, Modern Global Seismology (Academic, San Diego, Calif. 1995)Google Scholar
  132. 132.
    H.-C. Nataf, Y. Ricard, 3-SMAC: An a priori tomographic model of the upper mantle based on geophysical modeling, Phys. Earth Planet. Int. 95, 101–122 (1996)ADSCrossRefGoogle Scholar
  133. 133.
    R. Snieder, B. Romanowicz, A new formalism for the effect of lateral heterogeneity on normal modes and surface waves, I: Isotropic perturbations, perturbations of interfaces and gravitational perturbations, Geophys. J. R. Astron. Soc. 92, 207–222 (1988)zbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2002

Authors and Affiliations

  • Jean-Paul Montagner
    • 1
  1. 1.Département de Sismologie CNRS UMR 7580Institut Universitaire de FranceParisFrance

Personalised recommendations