Advertisement

Elastic-Wave Propagation in Random Polycrystals: Fundamentals and Application to Nondestructive Evaluation

  • Bruce R. Thompson
Chapter
Part of the Topics in Applied Physics book series (TAP, volume 84)

Abstract

The fundamental principles that govern the propagation of elastic waves in metal polycrystals are discussed in the context of their influence on nondestructive evaluation. The major influence of the polycrystalline microstructure is to determine the velocity, attenuation and backscattering of the elastic waves. For randomly oriented, equi-axed polycrystals, these effects are reasonably well understood. Waves travel at the same velocity in all directions and are exponentially attenuated at a rate controlled by the frequency and grain size. Signals backscattered from the grains, also controlled by the wavelength and grain size, produce a background noise that competes with flaw signals. The same basic phenomena exist in more complex materials. However, the understanding of these phenomena is not as well understood. Recent progress towards the development of such an understanding is discussed within this chapter. Examples include cases in which the grains have preferred crystallographic orientation, elongation in one or more dimension, or correlations in orientation from crystallite to crystallite. The latter case is particularly rich, in that the two dimensions scales of the media, associated with the grain size and the correlation length, can lead to a number of unusual phenomena such as highly anisotropic backscattering and phase modulations of an elastic beam. These modulations make the measurement, and even definition, of attenuation problematic. The current status of experimental observation and theoretical description of these phenomena is discussed. The chapter concludes with a discussion of the implications of these effects on the imaging of flaws in complex media.

Keywords

Titanium Alloy Elastic Wave Ultrasonic Velocity Recrystallization Texture Beta Phase 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Ultrasonics, Nondestructive Testing Handbook, Vol. 7 (American Society for Nondestructive Testing, Columbus, OH 1991)Google Scholar
  2. 2.
    Metals Handbook, Vol. 17 (ASM International, Metals Park, Ohio 1989)Google Scholar
  3. 3.
    R. B. Thompson, Quantitative ultrasonic nondestructive evaluation methods, J. Appl. Mech 50, 1191–1201 (1983)CrossRefGoogle Scholar
  4. 4.
    R. B. Thompson, D. O. Thompson, Ultrasonics in nondestructive evaluation, Proc. IEEE, 73, 1716–1755 (1985)CrossRefGoogle Scholar
  5. 5.
    W. Voigt, Lehrbuch der Kristallphysik (Tauber, Leipzig 1928)zbMATHGoogle Scholar
  6. 6.
    J. E. Gubernatis, E. Domany, J. A. Krumhansl, M. Huberman, The Born approximation in the theory of the scattering of elastic waves from flaws, J. Appl. Phys. 50, 4046 (1979)CrossRefADSGoogle Scholar
  7. 7.
    J. H. Rose, Ultrasonic backscattering from polycrystalline aggregates using time-domain linear response theory, Rev. Prog. Quant. Nondestr. Eval. B 10, 1715–1720 (1991)Google Scholar
  8. 8.
    J. H. Rose, Ultrasonic backscattering from microstructure, Rev. Prog. Quant. Nondestruct. Eval. B 11, 1677–1684 (1992)Google Scholar
  9. 9.
    J. H. Rose, Theory of ultrasonic backscatter from multiphase polycrystalline solids, Rev. Prog. Quant. Nondestruct. Eval. B 12, 1719–1729 (1993)Google Scholar
  10. 10.
    Y. K. Han, R. B. Thompson, Ultrasonic backscattering in duplex microstructures: Theory and application to titanium alloys, Metal. Trans. A 28, 91–104 (1997)CrossRefGoogle Scholar
  11. 11.
    F. E. Stanke, Spatial autocorrelation functions for calculations of effective propagation constants in polycrystalline materials, J. Acoust. Soc. Am. 80, 1479 (1986)CrossRefADSGoogle Scholar
  12. 12.
    F. E. Stanke, G. S. Kino, A unified theory for elastic wave propagation on polycrystalline materials, J. Acoust. Soc. Am. 75, 665 (1984)zbMATHCrossRefADSGoogle Scholar
  13. 13.
    F. E. Stanke, Inversion of attenuation measurements in terms of parameterized autocorrelation function, In NDE for Micro structure for Process Control, ed. by H.N.G. Wadley (ASM, Metals Park, Ohio 1985) p. 55Google Scholar
  14. 14.
    S. Ahmed, R. B. Thompson, propagation of elastic waves in equiaxed stainless steel polycrystals with aligned [001] axes, J. Acoust. Soc. Am. 99, 2086–2096 (1996)CrossRefADSGoogle Scholar
  15. 15.
    M. J. P. Musgrave, Crystal Acoustics (Holden-Day, San Francisco 1970)zbMATHGoogle Scholar
  16. 16.
    F. J. Margetan, R. B. Thompson, I. Yalda-Mooshabad, Backscattered micro-structural noise in ultrasonic toneburst measurements, J. Nondestr. Eval. 13, 111–136 (1994)CrossRefGoogle Scholar
  17. 17.
    R. B. Thompson, Determination of texture and grain size in metals: An example of materials characterization, In Sensing for Materials Characterization, Processing, and Manufacturing, ed. by G. Birnbaum, B.A. Auld (ASNT, Columbus, Ohio 1998) p. 23–45Google Scholar
  18. 18.
    R. B. Thompson, J. F. Smith, S. S. Lee, G. C. Johnson, A comparison of ultrasonic and X-ray determinations of texture in thin Cu and Al plates, Metal. Trans. A 20, 2431–2447 (1989)CrossRefGoogle Scholar
  19. 19.
    A. Anderson, R. B. Thompson, R. Bolingbroke, J. Root, Ultrasonic characterization of rolling and recrystallization textures in hot rolled aluminum sheet, Textures Microstruct. 26–27, 39–58 (1996)CrossRefGoogle Scholar
  20. 20.
    A. J. Anderson, R. B. Thompson, C. S. Cook, Ultrasonic measurements of the kearns texture factors in zircaloy, zirconium, and titanium, Metal. Trans. A 30, 1981–1988 (1999)CrossRefGoogle Scholar
  21. 21.
    R. B. Thompson, E. P. Papadakis, D. D. Bluhm, G. A. Alers, K. Forouraghi, H. D. Shank, S. J. Wormley, Measurement of texture and formability parameter with a fully automated ultrasonic instrument, J. Nondestr. Eval. 12, 45–62 (1993)CrossRefGoogle Scholar
  22. 22.
    I. Yalda-Mooshabad, R. B. Thompson, Influence of texture and grain morphology on the two-point correlation of elastic constraints: Theory and implications on ultrasonic attenuation and backscattering, Rev. Prog. Quant. Nondestr. Eval. B 14, 1939–1946 (1995)Google Scholar
  23. 23.
    S. Ahmed, R. B. Thompson, Propagation of elastic waves in equiaxed iron polycrystalline with aligned [001] axes, Rev. Prog. Quant. Nondestr. Eval. B 10, 1999–2005 (1991)Google Scholar
  24. 24.
    Y. Guo, R. B. Thompson, D. K. Rehbein, F. J. Margetan, M. Warchol, The effects of microstructure on the response of aluminum E-127 calibration standards, Rev. Prog. Quant. Nondestr. Eval. B 18, 2337–2344 (1999)Google Scholar
  25. 25.
    S. Ahmed, R. B. Thompson, Influence of columnar microstructure on ultrasonic backscattering, Rev. Prog. Quant. Nondestr. Eval. B 14, 1617–1624 (1995)Google Scholar
  26. 26.
    P. D. Panetta, unpublished resultsGoogle Scholar
  27. 27.
    S. Ahmed, R. B. Thompson, Attenuation and dispersion of ultrasonic waves in rolled aluminum, Rev. Prog. Quant. Nondestr. Eval. B 17, 1649–1655 (1998)Google Scholar
  28. 28.
    S. Ahmed, R. B. Thompson, Effect of preferred grain orientation and grain elongation on ultrasonic wave propagation in stainless steel, Rev. Prog. Quant. Nondestr. Eval. B 11, 1999–2006 (1992)Google Scholar
  29. 29.
    P. D. Panetta, R. B. Thompson, F. J. Margetan, Use of electron backscatter diffraction in understanding texture and the mechanisms of backscattered noise generation in titanium alloys, Rev. Prog. Quant. Nondestr. Eval. A 17, 89–96 (1998)Google Scholar
  30. 30.
    F. J. Margetan, P. D. Panetta, R. B. Thompson, Ultrasonic signal attenuation in engine titanium alloys, Rev. Prog. Quant. Nondestr. Eval. B 17, 1469–1476 (1998)Google Scholar
  31. 31.
    P. D. Panetta, F. J. Margetan, I. Yalda, R. B. Thompson, Ultrasonic attenuation measurements in jet engine titanium alloys, Rev. Prog. Quant. Nondestr. Eval. B 15, 1525–1532 (1996)Google Scholar
  32. 32.
    P. D. Panetta, R. B. Thompson, Ultrasonic attenuation in duplex titanium alloys, Rev. Prog. Quant. Nondestr. Eval. B 18, 1717–1724 (1999)Google Scholar
  33. 33.
    E. J. Nieters, R. S. Gilmore, R. C. Trzaskos, J. D. Young, D. C. Copley, P. J. Howard, M. E. Keller, W. J. Leach, A multizone technique for billet inspection, Rev. Prog. Quant. Nondestr. Eval. B 14, 2137–2144 (1995)Google Scholar
  34. 34.
    R. B. Thompson, K. M. Lakin, J. H. Rose, A comparison of the inverse born and imaging techniques for reconstructing flaw shapes, In 1981 Ultrasonics Symposium Proceedings, Vol. 2 (IEEE, New York 1981) p. 930–993CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2002

Authors and Affiliations

  • Bruce R. Thompson
    • 1
  1. 1.Center for Nondestructive Evaluation and Ames Laboratory, Departments of Materials Science and Engineering MechanicsIowa State UniversityAmesUSA

Personalised recommendations