Optical Frequency Measurements Relying on a Mid-Infrared Frequency Standard

  • G. Daniele Rovera
  • Ouali Acef
Part of the Topics in Applied Physics book series (TAP, volume 79)


Only a small number of groups are capable of measuring optical frequencies throughout the world. In this contribution we present some of the underlying philosophy of such frequency measurement systems, including some important theoretical hints. In particular, we concentrate on the approach that has been used with the BNM-LPTF frequency chain, where a separate secondary frequency standard in the mid-infrared has been used. The low-frequency section of the chain is characterized by a measurement of the phase noise spectral density at 716 GHz.

Most of the significant measurements performed in the last decade are briefly presented, together with a report on the actual stability and reproducibility of the CO2/OsO4 frequency standard.

Measuring the frequency of an optical frequency standard by direct comparison with the signal available at the output of a primary frequency standard (usually between 5 MHz and 100 MHz) requires a multiplication factor greater than 107. A number of possible configurations, using harmonic generation, sum or difference frequency generation, have been proposed and realized in the past [1,2,3,4,5,6] and in more recent times [7]. A new technique, employing a femtosecond laser, is presently giving its first impressive results [8].

All of the classical frequency chains require a large amount of manpower, together with a great deal of simultaneously operating hardware. This has the consequence that only a very few systems are actually in an operating condition throughout the world.


Phase Noise Schottky Diode Frequency Standard Voltage Control Oscillator Gate Time 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    M. Evenson, J. S. Wells, F. R. Petersen, B. L. Danielson, G. W. Day: Accurate frequencies of molecular transitions used in laser stabilization: The 3.39 m transition in CH4 and the 9.33-and 10.18-µm transitions in CO2. Appl. Phys. Lett. 22, 192–195 (1973)CrossRefADSGoogle Scholar
  2. 2.
    A. Clairon, B. Dahmani, J. Rutman: Accurate absolute frequency measurements on stabilized CO2 and He-Ne infrared lasers. IEEE Trans. Instrum. Meas. 29, 268–272 (1980)ADSCrossRefGoogle Scholar
  3. 3.
    Y. S. Domnin, N. B. Kosheljaevsky, V. Tatarenkov, P. S. Shumjatsky: Precise frequency measurements in submillimetric and infrared region. IEEE Trans. Instrum. Meas. 29, 264–267 (1980)ADSCrossRefGoogle Scholar
  4. 4.
    D. J. E. Knight, G. J. Edwards, P. R. Pearce, N. R. Cross: Measurements of the frequency of the 3.39 µm methane-stabilized laser to ±3 parts in 1011. IEEE Trans. Instrum. Meas. 29, 227–264 (1980)ADSCrossRefGoogle Scholar
  5. 5.
    B. G. Whitford: Measurement of the absolute frequency of CO2 lasers transitions by multiplication of of CO2 laser difference frequencies. IEEE Trans. Instrum. Meas. 29, 168–176 (1980)ADSCrossRefGoogle Scholar
  6. 6.
    D. Jennings, R. Pollock, F. R. Petersen, R. E. Drullinger, K. M. Evenson, J. S. Wells, J. L. Hall, H. P. Layer: Direct frequency measurement of the I2 stabilized He-Ne 473 THz (344 nm) laser. Opt. Lett. 8, 136–138 (1983)ADSCrossRefGoogle Scholar
  7. 7.
    H. Schnatz, B. Lippardt, J. Helmcke, F. Riehle, G. Zinner: First phase coherent frequency measurement of visible radiation. Phys. Rev. Lett. 76, 18–21 (1996)CrossRefADSGoogle Scholar
  8. 8.
    T. Udem, J. Reichert, R. Holzwarth, T. W. Hänsch: Absolute optical frequency measurement of the cesium D1 line with a mode-locked laser. Phys. Rev. Lett. 82, 3568–3571 (1999)CrossRefADSGoogle Scholar
  9. 9.
    A. Clairon, B. Dahmani, A. Filimon, J. Rutman: Precise frequency measurements of CO2/OsO4 and He-Ne/CH4 stabilized lasers. IEEE Trans. Instrum. Meas. 34, 265–268 (1985)ADSCrossRefGoogle Scholar
  10. 10.
    A. Clairon, O. Acef, C. Chardonnet, C. Bordé: State of the art for high accuracy frequency standards in the 28 THz range using saturated absorption resonances of OsO4 and CO2. In: Proc. Fourth Symposium on Frequency Standards and Metrology (Springer, Berlin, Heidelberg 1988)pp. 212–221Google Scholar
  11. 11.
    O. Acef: Metrological proprieties of CO2/OsO4 optical frequency standard. Opt. Commun. 134, 479–486 (1997)CrossRefADSGoogle Scholar
  12. 12.
    O. Acef: CO2/OsO4 lasers as frequency standards in the 29THz range. IEEE Trans. Instrum. Meas. 46, 162–165 (1997)CrossRefGoogle Scholar
  13. 13.
    J. E. Bernard, B. G. Whitford, A. A. Madej: A Tm:YAG laser for optical frequency measurements: mixing the 148 THz light with CO2 laser radiation. Opt. Commun. 140, 45–48 (1997)CrossRefADSGoogle Scholar
  14. 14.
    C. Freed, A. Javan: Standing-wave saturation resonances in the 10.6µm transitions observed in a low-pressure room-temperatur absorber gas. Appl. Phys. Lett. 17, 53–56 (1970)CrossRefADSGoogle Scholar
  15. 15.
    L. C. Bradley, K. L. Soohoo, C. Freed: Absolute frequency of lasing transitions in nine CO2 isotopic species. IEEE J. Quantum Electron. 22, 234–267 (1986)CrossRefADSGoogle Scholar
  16. 16.
    F. Riehle, H. Schnatz, B. Lippardt, G. Zinner, T. Trebst, J. Helmcke: The optical calcium frequency standard. IEEE Trans. Instrum. Meas. 48, 613–617 (1999)CrossRefGoogle Scholar
  17. 17.
    F. Rushewitz, J. L. Peng, H. Hinderthür, N. Schaffrath, K. Sengstock, W. Ertmer: Sub-kilohertz optical spectroscopy with a time domain atom interferometer. Phys. Rev. Lett. 80, 3137–3176 (1998)CrossRefGoogle Scholar
  18. 18.
    D. J. Wineland, J. Bergquist, D. Berkeland, J. J. Bollinger, F. Cruz, W. M. Ithano, B. M. Jelencović, B. E. King, D. M. Meekof, J. D. Miller, C. Monroe, M. Rauner, J. N. Tan: Application of laser-cooled ions to frequency standards and metrology. In: Proc. 5th Symposium on Frequency Standard and Metrology, J. Bergquist (Ed.) (Springer, Berlin, Heidelberg 1995)pp. 11–19Google Scholar
  19. 19.
    K. R. Vogel, T. Dinneen, A. Gallagher, J. L. Hall: Narrow-line Doppler cooling of strontium to the recoil limit. IEEE Trans. Instrum. Meas. 48, 618–621 (1999)CrossRefGoogle Scholar
  20. 20.
    O. Acef, A. Clairon, G. D. Rovera, F. Ducos, L. Hilico, G. Kramer, B. Lipphardt, A. Shelkovnikov, E. Kovalćhuk, E. Petrukhin, D. Tyurikov, M. Petrovskiy, M. Gubin, R. Felder, S. Lea: 1988 absolute frequency measurements with a set of transportable He-Ne/CH4 optical frequency standards. In: Proc. 13th European Frequency and Time Forum and 1999 IEEE International Frequency Control Symposium, Besançon (1999)Google Scholar
  21. 21.
    O. Acef, J. J. Zondy, M. Abed, G. D. Rovera, A. H. Gerard, A. Clairon, P. Laurent, Y. Millerioux, P. Juncar: A CO2 to visible optical frequency synthesis chain: accurate measurement of the 473 THz He-Ne/I2 laser. Opt. Commun. 97, 29–34 (1993)CrossRefADSGoogle Scholar
  22. 22.
    D. Touahri, O. Acef, A. Clairon, J. J. Zondy, R. Felder, L. Hilico, B. de Beauvoir, F. Biraben, F. Nez: Frequency measurement of the 5S1/2(F=3)-5D5/2(F=5) two-photon transition in rubidium. Opt. Commun. 133, 471–478 (1997)CrossRefADSGoogle Scholar
  23. 23.
    D. Middleton: An Introduction to Statistical Communication Theory (McGraw-Hill, New York 1960)Google Scholar
  24. 24.
    D. Halford: Infrared microwave frequency synthesis design: some relevant conceptual noise aspects. In: Proc. Frequency Standard and Metrology Seminar (Laval Univ., Sainte-Foy, Cdn 1971)pp. 431–466Google Scholar
  25. 25.
    F. L. Walls, A. De Marchi: RF spectrum of a signal after frequency multiplication: measurement and comparison with a simple calculation. IEEE Trans. Instrum. Meas. 24, 210–217 (1975)CrossRefGoogle Scholar
  26. 26.
    J. Rutman: Characterization of phase and frequency instabilities in precision frequency sources: fifteen years of progress. IEEE Proc. 66, 1048–1075 (1978)ADSCrossRefGoogle Scholar
  27. 27.
    M. Zhu, J. L. Hall: Stabilization of optical phase/frequency of a lasers system: application to a commercial dye with an external stabilizer. J. Opt. Soc. Am. B 10, 802–816 (1993)ADSCrossRefGoogle Scholar
  28. 28.
    M. Prevedelli, T. Freegarde, T. W. Hänsch: Phase locking of grating tuned diode lasers. Appl. Phys. B 60, 241–248 (1995)Google Scholar
  29. 29.
    A. Godone, F. Levi: About the radio frequency spectrum of a phase noise modulated carrier. In: Proc. 12th Europ. Frequency and Time Forum (Publisher, Warsaw 1998)pp. 339–342Google Scholar
  30. 30.
    A. Viterbi: Principles of Coherent Communication (McGraw-Hill, New York 1966)Google Scholar
  31. 31.
    A. Blanchard: Phase-locked Loops (Wiley, New York 1976)Google Scholar
  32. 32.
    H. R. Telle: Absolute measurement of optical frequency. In: Frequency Control of Semiconductor Lasers, M. Ohtsu (Ed.) (Wiley, New York 1996)Chap. 5Google Scholar
  33. 33.
    W. F. Egan: Phase-lock Basics (Wiley, New York 1998)Google Scholar
  34. 34.
    J. A. Barnes: Tables of bias functions B1 and B2 for variances based on finite samples of processes with power law spectral densities. Tech. Note 375 (National Bureau of Standards NBS, Boulder, CO 1969)Google Scholar
  35. 35.
    J. A. Barnes, D. Allan: Variances based on data with dead time between the measurements. Tech. Note 1337 (National Institute of Standards and Technology NIST, Boulder, CO 1990)Google Scholar
  36. 36.
    G. Kramer, B. Lippardt, C. O. Weiss: Coherent frequency synthesis in the infrared. IEEE Int. Freq. Control Symp. Proc. 46, 39–43 (1992)CrossRefGoogle Scholar
  37. 37.
    Y. C. Ni, C. O. Weiss: Sixtieth order harmonic mixing to 4.25 THz using a Schottky diode. Int. J. Infrared Millimeter Waves 11, 1069–1072 (1990)CrossRefADSGoogle Scholar
  38. 38.
    E. Sakuma, K.M. Evenson: Characteristic of tungsten-nikel point contact diodes used as laser harmonic-generator mixers. IEEE J. Quantum Electron. 10, 599–603 (1974)CrossRefADSGoogle Scholar
  39. 39.
    C. Fumeaux, W. Herrmann, F. K. Kneubühl, H. Rothuizen: Nanometer thin film Ni-NiO-Ni diodes for detection and mixing of 30 THz radiation. Infrared Phys. Tech. 39, 123–183 (1998)CrossRefADSGoogle Scholar
  40. 40.
    S. Bagayev, V. Klementyev, B. Timchenko, V. Zacharyash:Frequency multiplication and mixing on InP and GaAs Schottky diodes in IR and FIR regions and their use for optical time clock. In: Conference on Precision Electromagnetic Measurements, Tech. Digest (1996)Google Scholar
  41. 41.
    J. Farhomand, H. M. Pickett: A stable 1.25 watts CW far infrared laser radiating at 119 m methanol line. Int. J. Infrared Millimeter Waves 8, 441–447 (1987)CrossRefADSGoogle Scholar
  42. 42.
    B. Dahmani, A. Clairon: Optically pumped FIR lasers phase-locked by Stark effect applied to precise optical frequency measurements. IEEE Trans. Instrum. Meas. 32, 150–153 (1983)CrossRefGoogle Scholar
  43. 43.
    G. D. Rovera, O. Acef: Absolute frequency measurement of mid infrared secondary frequency standard at BNM LPTF. IEEE Trans. Instrum. Meas. 48, 571–573 (1999)CrossRefGoogle Scholar
  44. 44.
    E. Bava, A. de Marchi, A. Godone: Spectral analysis of synthesized signals in the mm wavelength region. IEEE Trans. Instrum. Meas. 26, 128–132 (1977)CrossRefGoogle Scholar
  45. 45.
    G. D. Rovera, G. Santarelli, A. Clairon: Frequency synthesis chain for the atomic fountain primary frequency standard. IEEE Trans. Ultrason. Ferroelec. Freq. Control 43, 354–358 (1996)CrossRefGoogle Scholar
  46. 46.
    A. De Marchi, F. Mussino, M. Siccardi: A high isolation low noise amplifier with unity near unity gain up to 100 MHz. IEEE Int. Freq. Control Symp. Proc. 47, 216–219 (1993)CrossRefGoogle Scholar
  47. 47.
    G. D. Rovera: Low frequency noise optically pumped FIR laser with frequency stabilized pump. Opt. Commun. 143, 247–251 (1997)CrossRefADSGoogle Scholar
  48. 48.
    J. Bordé, L. Henry: IEEE J. Quantum Electron. 4, 874–880 (1968)CrossRefADSGoogle Scholar
  49. 49.
    O. N. Kompanets, A. R. Kukudzhanov, V. S. Letokov, E. L. Michailov: Frequency-stabilized CO2 laser using OsO4 saturation resonances. In: Proc. 2nd Symposium on Frequency Standard and Metrology (Springer, Berlin, Heidelberg 1976)pp. 167–181Google Scholar
  50. 50.
    E. N. Bazarov, G. A. Gerasimov, V. P. Gubin, A. I. Sazonof, N. I. Starostin, V. N. Strel’nikov, V. V. Fomin: Stabilized CO2/OsO4 laser with a frequency reproducibility of 10−12. Sov. J. Quantum Electron. 17, 1421–1424 (1987)CrossRefADSGoogle Scholar
  51. 51.
    A. Clairon, O. Acef, C. Chardonnet, C. J. Bordé: State-of-the-art for high accuracy frequency standards in the 28THz range using saturated absorption resonances of OsO4 and CO2. In: Proc. Fourth Symposium on Frequency Standards and Metrology, A. De Marchi (Ed.) (Springer, Berlin, Heidelberg 1989)pp. 212–221Google Scholar
  52. 52.
    C. Chardonnet, F. Guernet, G. Charton, C. J. Bordé: Ultrahigh resolution saturation spectroscopy using slow molecules in an externall cell. Appl. Phys. B 59, 333–343 (1994)CrossRefADSGoogle Scholar
  53. 53.
    CIPM: Révision de la mise en pratique de la definition du metre, Rec. 1 (CI-1997) (Comité Int. Poids Mésures, Paris 1997)Google Scholar
  54. 54.
    A. Clairon, B. Dahmani, O. Acef, M. Granveaud, Y. S. Domnin, S. B. Pouchkine, V. M. Tatarenkov, R. Felder: Recent experiments leading to the characterization of the performance of portable (He-Ne)/CH4 lasers. Metrologia 25, 9–16 (1988)CrossRefADSGoogle Scholar
  55. 55.
    O. Acef, A. Clairon, L. Hilico, G. D. Rovera, G. Kramer, B. Lipphardt, A. Shelkovnikov, E. Kovalchuk, E. Petrukhin, D. Tyurikov, M. Petrovskiy, M. Gubin: Absolute frequency measurements and intercomparisons of He-Ne/CH4 = 3.39 µCO2/OsO4 = 10.6 µm frequency stabilized lasers and Cs primary standard. In: Conference on Precision Electromagnetic Measurements 1998 Tech.Digest(1998)pp. 258–259Google Scholar
  56. 56.
    R. W. P. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, H. Ward: Laser phase and frequency stabilisation using an optical resonator. Appl. Phys. B 31, 97–105 (1983)CrossRefADSGoogle Scholar
  57. 57.
    B. Dahmani, L. Hollberg, R. Drullinger: Frequency stabilization of semiconductor lasers by resonant optical feedback. Opt. Lett. 12, 876 (1987)ADSCrossRefGoogle Scholar
  58. 58.
    P. Laurent, A. Clairon, C. Bréant: Frequency noise analysis of optically self-locked diode lasers. IEEE J. Quantum Electron. 25, 1131–1142 (1989)CrossRefADSGoogle Scholar
  59. 59.
    F. Nez, M. D. Plimmer, S. Bourzeix, L. Julien, F. Biraben, R. Felder, Y. Millerioux, P. de Natale: First pure frequency measurement of an optical transition in atomic hydrogen: better determination of the Rydberg constant. Europhys. Lett. 24, 635–640 (1993)CrossRefADSGoogle Scholar
  60. 60.
    Y. Millerioux, D. Touahri, L. Hilico, A. Clairon, R. Felder, F. Biraben, B. de Beauvoir: Frequency measurement of the 5S 1/2 (F=3)-5D5/2(F = 5) two photon transition in rubidium. Opt. Commun. 108, 91–96 (1994)CrossRefADSGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2001

Authors and Affiliations

  • G. Daniele Rovera
    • 1
  • Ouali Acef
    • 1
  1. 1.BNM-LPTF Observatoire de ParisParisFrance

Personalised recommendations