Accurate Optical-Frequency Synthesis

  • Andre N. Luiten
Part of the Topics in Applied Physics book series (TAP, volume 79)


This contribution reports on devices that are of critical importance to the development of an accurate and phase-coherent optical synthesizer. In particular, we report on techniques to generate optical signals at accurate offset frequencies from a given optical signal, as well as techniques that can be used to link the optical and microwave frequency domains. A detailed presentation of potential noise sources of the various techniques enables a calculation of the likely frequency stability of the synthesizer. When those calculations are combined with experimentally measured results, we demonstrate that the long-hoped-for goal of optical synthesis at the fractional frequency level of 10−15 (≈ 1Hz) level is readily achievable with present-day technology.


Phase Noise Optical Frequency Optical Parametric Oscillator Phase Detector Residual Phase 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    J. L. Hall: Frequency stabilized lasers —a parochial review. Proc. SPIE 1837, 2–15 (1992)ADSCrossRefGoogle Scholar
  2. 2.
    T. W. Hänsch: High resolution spectroscopy of hydrogen. In: The Hydrogen Atom. G. F. Bassani, M. Inguscio, T. W. Hänsch (Eds.) (Springer, Berlin, Heidelberg 1989) pp. 93–102Google Scholar
  3. 3.
    B. Glance: Computer-controlled optical frequency synthesizer. Proc. SPIE 1837, 414–418 (1992)ADSCrossRefGoogle Scholar
  4. 4.
    D. W. Allan: Statistics of atomic frequency standards. Proc. IEEE 54, 221–230 (1966)CrossRefGoogle Scholar
  5. 5.
    D. W. Allan, J. H. Shoaf, D. Halford: Statistics of time and frequency data analysis. In: Time and Frequency: Theory and Fundamentals. B.E. Blair (Ed.) (National Bureau of Standards, Washington, DC 1974)Vol. 140Google Scholar
  6. 6.
    T. Fujii, T. Nayuki, K. Nemoto, M. Kozuma, M. Kourogi, M. Ohtsu: Accurate frequency control of external-cavity laser diode by sideband locking technique. Jpn. J. Appl. Phys. 35, 6090–6094 (1996)CrossRefADSGoogle Scholar
  7. 7.
    C. Freed, J. W. Bielinski, W. Lo: Programmable, secondary frequency standard baed infrared synthesizer using tunable lead-salt diode lasers. Proc. SPIE 438, 119–124 (1983)Google Scholar
  8. 8.
    D. Mayden: Acousto-optical pulse modulators. J. Quantum Electron. 6, 15–24 (1970)CrossRefADSGoogle Scholar
  9. 9.
    W. Oates, F. Bondu, R. W. Fox, L. Hollberg: A diode-laser optical frequency standard based on laser-cooled Ca atoms: Sub-kilohertz spectroscopy by optical shelving detection. Eur. Phys. J. D 7, 449–460 (1999)ADSCrossRefGoogle Scholar
  10. 10.
    P. Bouyer, T. L. Gustavson, K. G. Haritos, M. A. Kasevich: Microwave signal generation with optical injection locking. Opt. Lett. 21, 1502–1504 (1996)ADSCrossRefGoogle Scholar
  11. 11.
    V. G. Dmitriev, G. G. Gurzadyan, D. N. Nikogosyan: Handbook of Nonlinear Optical Crystals. Springer Ser. Opt. Sci. 64 (Springer, Heidelberg, Berlin 1991)Google Scholar
  12. 12.
    R. L. Sutherland: Handbook of Nonlinear Optics. (Marcel Dekker, New York 1996)Google Scholar
  13. 13.
    F. Zernike, J. E. Midwinter: Applied Nonlinear Optics. Wiley Ser. Pure Appl. Opt. (Wiley, New York 1973)Google Scholar
  14. 14.
    N. Bloembergen: Nonlinear Optics. Frontiers Phys. (Benjamin, New York 1965)Google Scholar
  15. 15.
    M. Kasevich, S. Chu: Laser cooling below a photon recoil with three-level atoms. Phys. Rev. Lett. 69, 1741–1744 (1992)ADSCrossRefGoogle Scholar
  16. 16.
    K. Szymaniec, S. Ghezali, L. Cognet, A. Clairon: Injection locking of diode lasers to frequency modulated source. Opt. Commun. 144, 50–54 (1997)ADSCrossRefGoogle Scholar
  17. 17.
    S. Bourzeix, de Beauvoir, F. Nez, F. de Tomasi, L. Julien, F. Biraben: Ultra-violet light generation at 205 nm by two frequency doubling steps of a cw titanium-sapphire laser. Opt. Commun. 133, 239–244 (1997)ADSCrossRefGoogle Scholar
  18. 18.
    S. Sayama, M. Ohtsu: Tunable UV cw generation by frequency tripling of a Ti:sapphire laser. Opt. Commun. 137, 295–298 (1997)ADSCrossRefGoogle Scholar
  19. 19.
    W. R. Bosenberg, J. I. Alexander, L. E. Myers, R. W. Wallace: 2.5 W, continuous wave, 629 nm solid-state source. OSA Topics Adv. Solid State Lasers 19, 68–71 (1998)Google Scholar
  20. 20.
    D. Touahri, F. Nez, M. Abed, J. J. Zondy, O. Acef, L. Hilico, A. Clairon, Y. Millerioux, F. Biraben, L. Julien, R. Felder: LPTF frequency synthesis chain: results and improvement for the near future. IEEE Trans. Instrum. Meas. 44(2), 170–172 (1995)CrossRefGoogle Scholar
  21. 21.
    H. Schnatz, B. Lipphardt, J. Helmcke, F. Riehle, G. Zinner: First phase-coherent frequency measurement of visible radiation. Phys. Rev. Lett. 76(1), 18–21 (1996)ADSCrossRefGoogle Scholar
  22. 22.
    F. Schmidt-Kaler, D. Leibfried, S. eel, Zimmermann, W. König, M. Weitz, T. W. Hänsch: High-resolution spectroscopy of the 1S-2S transition of atomic hydrogen and deuterium. Phys. Rev. A 51(4), 2789–2800 (1995)ADSCrossRefGoogle Scholar
  23. 23.
    B. de Beauvoir, F. Nez, L. Julien, B. Cagnac, F. Biraben, D. Touahri, L. Hilico, O. Acef, A. Clairon, J. J. Zondy: Absolute frequency measurement of the 2S-8S/D transitions in hydrogen and deuterium: New determination of the Rydberg constant. Phys. Rev. Lett. 78(3), 440–443 (1997)ADSCrossRefGoogle Scholar
  24. 24.
    D. A. Jennings, R. Pollock, F. R. Petersen, R. E. Drullinger,K. M. Evanson, J. S. Wells, J. L. Hall, H. P. Layer: Direct frequency measurement of the I2-stabilized He-Ne 473-THz (633-nm) laser. Opt. Lett. 8, 136–138 (1983)ADSCrossRefGoogle Scholar
  25. 25.
    A. A. Madej, J. E. Bernard, B. G. Whitford, L. Marmet, K. J. Siemsen: The strontium single ion optical frequency standard: preliminary absolute frequency measurements using a phase locked optical frequency chain. In: Conf. on Precision Electromagnetic Measurements T. L. Nelson (Ed.) (National Bureau of Standards, Washington, DC 1998) pp. 323–324Google Scholar
  26. 26.
    D. W. Faries, K. A. Gehring, P. L. Richards, Y. R. Shen: Tunable far-infrared radiation generated from the difference frequency between two ruby lasers. Phys. Rev. 180(2), 363–365 (1969)ADSCrossRefGoogle Scholar
  27. 27.
    H. Odashima, L. R. Zink, M. Evenson: Tunable far-infrared spectroscopy extended to 9.1 THz. Opt. Lett. 24(6), 406–407 (1999)ADSCrossRefGoogle Scholar
  28. 28.
    B. Lai, N. C. Wong, L. K. Cheng: Continuous-wave tunable light source at 1.6 m by difference-frequency mixing in CsTiOAsO4. Opt. Lett. 20(17), 779–1781 (1995)ADSCrossRefGoogle Scholar
  29. 29.
    N. C. Wong: Optical frequency counting from the UV to the near IR. Opt. Lett. 17(16), 1155–1157 (1992)ADSCrossRefGoogle Scholar
  30. 30.
    N. C. Wong: Optical-to-microwave frequency chain utilizing a two-laser-based optical parametric oscillator network. Appl. Phys. B 61(2), 143–149 (1995)ADSCrossRefGoogle Scholar
  31. 31.
    P. T. Nee, N. C. Wong: Optical frequency division by 3 of 532 nm in periodically poled lithium niobate with a double grating. Opt. Lett. 23(1), 46–48 (1998)ADSCrossRefGoogle Scholar
  32. 32.
    O. Pfister, M. Mürtz, J. S. Wells, L. Hollberg, J. T. Murray: Division by 3 of optical frequencies by use of difference-frequency generation in noncritically phase-matched RbTiOAsO4. Opt. Lett. 21, 1387–1389 (1996)ADSCrossRefGoogle Scholar
  33. 33.
    J. E. Bernard, B. G. Whitford, L. Marmet: Phase-locked optical divide-by-3 system for visible radiation. Opt. Lett. 24(2), 98–1000 (1999)ADSCrossRefGoogle Scholar
  34. 34.
    J. A. Giordmaine, R. C. Miller: Tunable coherent parametric oscillation in LiNbO3 at optical frequencies. Phys. Rev. Lett. 14, 973–976 (1965)ADSCrossRefGoogle Scholar
  35. 35.
    R. Graham, H. Haken: The quantum fluctuations of the optical parametric oscillator I. Zeit. Phys. 210, 276–302 (1968)CrossRefADSGoogle Scholar
  36. 36.
    K. Schneider, P. Kramper, S. Schiller, J. Mlynek: Toward an optical synthesizer: a single-frequency parametric oscillator using periodically poled Li:NbO3. Opt. Lett. 22(17), 1293–1295 (1997)ADSCrossRefGoogle Scholar
  37. 37.
    D. Lee, N. C. Wong: High-performance tunable optical parametric oscillator. Proc. SPIE 1837, 419–425 (1992)ADSCrossRefGoogle Scholar
  38. 38.
    T. Ikegami, S. Slyusarev, T. Kurosu, Y. Fukuyama, S. Ohshima: Characteristics of a cw monolithic optical parametric oscillator. Appl. Phys. B 66, 719–725 (1998)ADSCrossRefGoogle Scholar
  39. 39.
    L. R. Brothers, D. Lee, N. C. Wong: Terahertz optical frequency comb generation and phase locking of an optical parametric oscillator at 665 GHz. Opt. Lett. 19, 245–247 (1994)ADSCrossRefGoogle Scholar
  40. 40.
    M. E. Klein, D. H. Lee, J. P. Meyn, K. J. Boller, R. Wallenstein: Single resonant continuous-wave optical parametric oscillator pumped by a diode laser. Opt. Lett. 24, 1142–1144 (1999)ADSCrossRefGoogle Scholar
  41. 41.
    T. Ikegami, S. Slyusarev, S.I. Ohshima: Monolithic cw optical parametric oscillators for optical frequency measurement. In: Conference on Precision Electromagnetic Measurements, T. L. Nelson (Ed.) (National Bureau of Standards, Washington, DC 1998) pp. 469-470Google Scholar
  42. 42.
    S. Schiller, R. L. Byer: Quadruply resonant optical parametric oscillation in a monolithic total-internal-reflection resonator. J. Opt. Soc. Am. B 10, 1696–1707 (1993)ADSCrossRefGoogle Scholar
  43. 43.
    G. M. Gibson, M. Ebrahimzadeh, M. J. Padgett, M. H. Dunn: Continuous-wave optical parametric oscillator based on periodically poled KTiOPO4 and its application to spectroscopy. Opt. Lett. 24, 397–399 (1999)ADSCrossRefGoogle Scholar
  44. 44.
    E. J. Mason, N. C. Wong: Observation of two distinct phase states in a self-phase-locked type II phase-matched optical parametric oscillator. Opt. Lett. 23, 1733–1735 (1998)ADSCrossRefGoogle Scholar
  45. 45.
    C. D. Nabors, S. T. Yang, T. Day, R. L. Byer: Coherence properties of a doubly resonant monolithic optical parametric oscillator. J. Opt. Soc. Am. B 7, 815–820 (1990)ADSCrossRefGoogle Scholar
  46. 46.
    D. H. Lee, M. E. Klein, J. P. Meyn, P. Groß, R. Wallenstein, J. Boller: Self-injection-locking of a CW OPO by intracavity frequency-doubling the idler wave. Opt. Express 5(5), 114–119 (1999)ADSCrossRefGoogle Scholar
  47. 47.
    R. Wynands, O. Coste, C. Rembe, D. Meschede: How accurate is optical second-harmonic generation? Opt. Lett. 20(10), 1095–1097 (1995)ADSCrossRefGoogle Scholar
  48. 48.
    T. Ikegami, S. Slyusarev, S.i. Ohshima, E. Sakuma: Accuracy of an optical parametric oscillator as an optical frequency divider. Opt. Commun. 127, 69–72 (1996)ADSCrossRefGoogle Scholar
  49. 49.
    M. Kourogi, Widiyatomoko, Y. Takeuchi, M. Ohtsu: Limit of optical-frequency comb generation due to material dispersion. IEEE J. Quantum Electron. 31, 2120–2125 (1995)CrossRefADSGoogle Scholar
  50. 50.
    K. Imai, M. Kourogi, M. Ohtsu: 30-THz span optical frequency comb generation by self-phase modulation in an optical fiber. IEEE J. Quantum Electron. 34, 54–60 (1998)CrossRefADSGoogle Scholar
  51. 51.
    Widiyatmoko, Imai, M. Kourogi, M. Ohtsu: Second-harmonic generation of an optical frequency comb at 1.55µOpt. Lett. 24, 315–317 (1999)ADSCrossRefGoogle Scholar
  52. 52.
    L. R. Brothers, N. C. Wong: Optical frequency comb generation for terahertz difference-frequency measurements. Proc. SPIE 2378, 222–229 (1995)ADSGoogle Scholar
  53. 53.
    B. Widiyatmoko, M. Kourogi, M. Ohtsu: Linking two optical frequency combs by heterodyne optical phase locking between diode lasers at 2.6 THz frequency-difference. IEEE Photon. Technol. Lett. 11, 460–462 (1999)CrossRefADSGoogle Scholar
  54. 54.
    W. Wang, M. Ohtsu: Generation of frequency-tunable light and frequency reference grids using diode lasers for one-petahertz optical frequency sweep generator. IEEE J. Quantum Electron. 31, 456–467 (1995)CrossRefADSGoogle Scholar
  55. 55.
    S. Slyusarev, T. Ikegami, S.i. Ohshima, E. Sakuma: Frequency measurement of accurate sidebands of an optical frequency comb generator. Opt. Commun. 135, 223–226 (1997)ADSCrossRefGoogle Scholar
  56. 56.
    T. Udem, J. Reichert, T. W. Hänsch, M. Kourogi: Accuracy of optical frequency comb generators and optical frequency interval divider chains. Opt. Lett. 23(17), 1387–1389 (1998)ADSCrossRefGoogle Scholar
  57. 57.
    K. Imai, Y. Zhao, M. Kourogi, B. Widiyatmoko, M. Ohtsu: Accuracy of optical frequency comb generation in optical fibre. Opt. Lett. 24, 214–216 (1999)ADSCrossRefGoogle Scholar
  58. 58.
    H. R. Telle, G. Steinmeyer, A. E. Dunlop, J. Stenger, D. H. Sutter, U. Keller: Carrier-envelope offset phase control: A novel concept for absolute optical frequency measurement and ultrashort pulse generation. Appl. Phys. B 69(4) (1999) 327–332ADSCrossRefGoogle Scholar
  59. 59.
    T. Udem, J. Reichert, R. Holzworth, T. W. Hänsch, J. Knight, W. J. Wadsworth, and P. St. J. Russell: The Measurement of Optical Frequencies with Mode-Locked Lasers, In; 2000 Conference on Precision Electromagnetic Measurements, John Hunter and Leigh Johnson (Ed.) (Institute of Electrical and Electronic Engineers, Sydney, Australia, 2000) pp. 683–684CrossRefGoogle Scholar
  60. 60.
    S. A. Diddams, D. J. Jones, Jun Ye, S. T. Cundiff and J. L. Hall: Direct RF to Optical Frequency Measurements with a Femtosecond Laser Comb, In: 2000 Conference on Precision Electromagnetic Measurements, John Hunter and Leigh Johnson (Ed.) (Institute of Electrical and Electronic Engineers, Sydney, Australia, 2000) pp. 687–688CrossRefGoogle Scholar
  61. 61.
    T. Udem, J. Reichert, R. Holzwarth, T. W. Hänsch: Accurate measurement of large optical frequency differences with a mode locked laser. Opt. Lett. 24(13), 881–883 (1999)ADSCrossRefGoogle Scholar
  62. 62.
    D. von der Linde: Characterization of the noise in continuously operating mode-locked lasers. Appl. Phys. B 39, 201–217(1986)ADSCrossRefGoogle Scholar
  63. 63.
    H. A. Haus, A. Mecozzi: Noise of mode-locked lasers. IEEE J. Quantum Electron. 29, 983–996 (1993)ADSCrossRefGoogle Scholar
  64. 64.
    H. Tsuchida: Time-interval analysis of laser-pulse-timing fluctuations. Opt. Lett. 24, 1434–1436 (1999)ADSCrossRefGoogle Scholar
  65. 65.
    J. M. Shieh, S. C. Liu, C. L. Pan: Characterization and reduction of phase noise in passively mode-locked ti:sapphire lasers with intracavity saturable absorbers. J. Opt. Soc. Am. B 15, 1802–1807 (1998)ADSCrossRefGoogle Scholar
  66. 66.
    D. E. Spence, J. M. Dudley, K. Lamb, W. E. Sleat, W. Sibbett: Nearly quantum-limited timing jitter in a self-mode-locked Ti:sapphire laser. Opt. Lett. 19, 481–483 (1994)ADSCrossRefGoogle Scholar
  67. 67.
    D. E. Spence, J. M. Evans, W. E. Sleat, W. Sibbett: Regeneratively initiated self-mode-locked Ti:sapphire laser. Opt. Lett. 16, 1762–1764 (1991)ADSCrossRefGoogle Scholar
  68. 68.
    G. J. Valentine, J. M. Hopkins, P. Loza-Alvarez, G. T. Kennedy, W. Sibbett: Ultralow-pump-threshold, femtosecond Cr3+:LiSrAlF6 laser pumped by a single narrow-stripe algainp laser diode. Opt. Lett. 22, 1639–1641 (1997)ADSCrossRefGoogle Scholar
  69. 69.
    M. Aoyama, K. Yamakawa: Noise characterization of an all-solid-sate mirror dispersion-controlled 10-fs Ti:sapphire laser. Opt. Commun. 140, 255–258 (1997)ADSCrossRefGoogle Scholar
  70. 70.
    T. B. Simpson, T. Day, F. Doft, M. M. Malley, G. W. Sutton: Frequency-stabilized mode-locked solid-state laser system for precision range-doppler imaging. IEEE J. Quantum Electron. 29, 2489–2496 (1993)CrossRefADSGoogle Scholar
  71. 71.
    J. Reichert, R. Holzwarth, T. Udem, T. W. Hänsch: Measuring the frequency of light with mode-locked lasers. Opt. Commun. 172, (1999) pp. 59–68ADSCrossRefGoogle Scholar
  72. 72.
    M. Prevedelli, T. Freegarde, T. W. Hänsch: Phase locking of grating-tuned diode lasers. Appl. Phys. B 60, S241–S248 (1995)Google Scholar
  73. 73.
    T. Udem, J. Reichert, R. Holzwarth, T. W. Hänsch: Absolute optical frequency measurement of a cesium D1 line with a mode locked laser. Phys. Rev. Lett. 82, 3568–3571 (1999)ADSCrossRefGoogle Scholar
  74. 74.
    M. J. Snadden, R. B. M. Clarke, E. Riis: Injection-locking technique for heterodyne optical phase locking of a diode laser. Opt. Lett. 22, 892–894 (1997)ADSCrossRefGoogle Scholar
  75. 75.
    G. Wenke, S. Saito: Phase locking of semiconductor lasers using homodyne detection and negative electrical feedback. Jpn. J. Appl. Phys. 24, L908–L910 (1985)ADSCrossRefGoogle Scholar
  76. 76.
    L. G. Kazovsky: Balanced phase-locked loops for optical homodyne receivers: performance analysis, design considerations and laser linewidth requirements. J. Lightwave Technol. 4, 182–195 (1986)ADSCrossRefGoogle Scholar
  77. 77.
    M. Ohtsu: Highly Coherent Semiconductor Lasers. The Artech House Opto-electron. Library, (Artech House, Boston 1992)Google Scholar
  78. 78.
    M. Kourogi, C. H. Shin, M. Ohtsu: A 134 MHz bandwidth homodyne optical phase locked loop of semiconductor lasers. IEEE Photon. Technol. Lett. 3, 270–272 (1991)ADSCrossRefGoogle Scholar
  79. 79.
    K. Kuboki, M. Ohtsu: Frequency offset locking of AlGaAs semiconductor lasers. IEEE J. Quantum Electron. 23, 388–394 (1987)ADSCrossRefGoogle Scholar
  80. 80.
    C. H. Shin, M. Ohtsu: Heterodyne optical phase-locked loop by confocal fabryperot cavity coupled AlGaAs lasers. IEEE Photon. Technol. Lett. 2, 297–300 (1990)CrossRefADSGoogle Scholar
  81. 81.
    B. Dahmani, L. Hollberg, R. Drullinger: Frequency stabilization of semiconductor lasers by resonant optical feedback. Opt. Lett. 12, 876–878 (1987)ADSCrossRefGoogle Scholar
  82. 82.
    H. Li, H. R. Telle: Efficient frequency noise reduction of GaAlAs semiconductor lasers by optical feedback from an external high-finesse resonator. IEEE J. Quantum Electron. 25, 257–264 (1989)CrossRefADSGoogle Scholar
  83. 83.
    E. A. Swanson, S. B. Alexander, R. S. Bondurant: Wideband frequency noise reduction and FM equalization in AlGaAs lasers using electrical feedback. Opt. Lett. 16, 1403–1405 (1991)ADSCrossRefGoogle Scholar
  84. 84.
    J. Harrison, A. Mooradian: Linewidth and offset frequency locking of external cavity GaAlAs lasers. IEEE J. Quantum Electron. 25, 1152–1155 (1989)ADSCrossRefGoogle Scholar
  85. 85.
    Harvey, C. J. Myatt: External cavity diode laser using a grazing incidence diffraction grating. Opt. Lett. 16, 910–912 (1991)ADSCrossRefGoogle Scholar
  86. 86.
    G. Santarelli, A. Clairon, S. N. Lea, G. M. Tino: Heterodyne optical phase-locking of extended-cavity semiconductor lasers at 9 GHz. Opt. Commun. 104, 339–344 (1994)ADSCrossRefGoogle Scholar
  87. 87.
    H. R. Telle, D. Meschede, T. W. Hänsch: Realization of a new concept for visible frequency division: phase locking of harmonic and sum frequencies. Opt. Lett. 15, 532–534 (1990)ADSCrossRefGoogle Scholar
  88. 88.
    R. Wynands, T. Mukai, T. W. Hänsch: Coherent bisection of optical frequency intervals as large as 530 THz. Opt. Lett. 17, 1749–1751 (1992)ADSCrossRefGoogle Scholar
  89. 89.
    C. Koch, H. R. Telle: Bridging THz-frequency gaps in the near ir by coherent four-wave mixing in GaAlAs laser diodes. Opt. Commun. 91, 371–376 (1992)ADSCrossRefGoogle Scholar
  90. 90.
    T. Mukai, R. Wynands, T. W. Hänsch: Optical pulse synthesis with three cw semiconductor lasers using nonlinear phase-locking. Opt. Commun. 95, 71–76 (1993)ADSCrossRefGoogle Scholar
  91. 91.
    R. P. Kovacich, A. N. Luiten: Frequency stability limits of optical frequency intervals in new generation optical to microwave frequency chains. In: 13th Europ. Frequency and Time Forum and 1999 IEEE Int. Frequency Control Symp., Besançon, France (1999) pp. 626–629Google Scholar
  92. 92.
    K. Shimoda: Optical frequency counters. Appl. Phys. B63, 507–510 (1996)ADSGoogle Scholar
  93. 93.
    Nakagawa, M. Kourogi, M. Ohtsu: Proposal of a frequency synthesis chain between the microwave and optical frequencies of the Ca intercombination line at 657 nm using diode lasers. Appl. Phys. B 57, 425–430 (1993)ADSCrossRefGoogle Scholar
  94. 94.
    A. N. Luiten, A. G. Mann, N. J. McDonald, D. G. Blair: Latest results of the UWA cryogenic sapphire oscillator. Int. Freq. Control Symp. Proc. 49, 433–437 (1995)Google Scholar
  95. 95.
    S. Wolff, D. Messerschmidt, H. Fouckhardt: Fourier-optical selection of higher order transverse modes in broad area lasers. Opt. Express 5(3), 32–37 (1999)ADSCrossRefGoogle Scholar
  96. 96.
    J. J. McFerran, A. N. Luiten: Development of an optical frequency interval divider spanning 282 THz. In: European Frequency and Time Forum (IEE, Turin 2000) in pressGoogle Scholar
  97. 97.
    A. N. Luiten, R. P. Kovacich, J. J. McFerran: Optical frequency synthesis with 1 Hz resolution. IEEE Trans. Instrum. Meas. 48, 558–562 (1999)CrossRefGoogle Scholar
  98. 98.
    S. Uemura, K. Torizuka: Generation of 12-fs pulses from a diode-pumped Kerr-lens mode-locked Cr:LiSAF laser. Opt. Lett. 24, 780–782 (1999)ADSCrossRefGoogle Scholar
  99. 99.
    A. J. Viterbi: Principles of Coherent Communication (McGraw-Hill, New York 1966)Google Scholar
  100. 100.
    J. L. Stensby: Phase-locked Loops: Theory and Applications (CRC Press, Boca Raton 1997)Google Scholar
  101. 101.
    J. Wilson, J. Hawkes: Optoelectronics: An Introduction (Prentice Hall, New York 1989)Google Scholar
  102. 102.
    M. Watanabe, K. Hayasaka, H. Imajo, R. Ohmukai, S. Urabe: Sum-frequency generation near 194 nm with an external cavity by simultaneous enhancement of frequency-stabilized fundamental lasers. Jpn. J. Appl. Phys. 33, 1599–1602 (1994)ADSCrossRefGoogle Scholar
  103. 103.
    L. E. Myers, R. Eckardt, M. M. Fejer, R. L. Byer, W. R. Bosenberg, J. W. Pierce: Quasi-phase-matched optical parametric oscillators in bulk periodically poled LiNbO3. J. Opt. Soc. Am. B 12, 2102–2116 (1995)ADSCrossRefGoogle Scholar
  104. 104.
    J. P. Meyn, M. E. Klein, D. Woll, R. Wallenstein, D. Rytz: Periodically poled potassium niobate for second-harmonic generation at 463 nm. Opt. Lett. 24, 1154–1156 (1999)ADSCrossRefGoogle Scholar
  105. 105.
    R. G. Batchko, M. M. Fejer, R. L. Byer, D. Woll, R. Wallenstein, V. Y. Shur, L. Erman: Continuous-wave quasi-phase macthed generation of 60mW at 465 nm by single-pass frequency doubling of a laser diode in backswitch-poled lithium niobate. Opt. Lett. 24, 1293–1295 (1999)ADSCrossRefGoogle Scholar
  106. 106.
    J. C. Baumert, P. Günter: Noncritically phase-matched sum frequency generation and image up-conversion in KNbO3 crystals. Appl. Phys. Lett. 50, 554–556 (1987)ADSCrossRefGoogle Scholar
  107. 107.
    G. D. Boyd, A. Ashkin, J. M. Dziedzic, D. A. Kleinman: Second-harmonic generation of light with double refraction. Phys. Rev. 137(4 A), A1305–A1320 (1965)ADSCrossRefGoogle Scholar
  108. 108.
    B. Zysset, I. Biaggio, P. Günter: Refractive indices of orthorhombic KNbO3. I. Dispersion and temperature dependence. J. Opt. Sci. Am. B 9, 380–386 (1992)ADSCrossRefGoogle Scholar
  109. 109.
    J. J. McFerran, A. N. Luiten: Efficient continuous-wave nonlinear ultraviolet generation in LiB3O5 and RbD2AsO4. Appl. Opt. (2000) in pressGoogle Scholar
  110. 110.
    G. Ascheid, H. Meyr: Cycle slips in phase-locked loops: A tutorial survey. IEEE Trans. Commun. 30, 2228–2241 (1982)CrossRefGoogle Scholar
  111. 111.
    H. R. Telle: Absolute measurement of optical frequencies. In: Frequency Control of Semiconductor Lasers, M. Ohtsu (Ed.) (Wiley, New York 1996)Google Scholar
  112. 112.
    F. M. Gardner, J. F. Heck: Angle modulation limits of a noise-free phase lock loop. IEEE Trans. Commun. 26, 1129–1136 (1978)CrossRefGoogle Scholar
  113. 113.
    P. Birch, M. J. Downs: An updated Edlén equation for the refractive index of air. Metrologia 30, 155–162 (1993)ADSCrossRefGoogle Scholar
  114. 114.
    U. Sterr, B. Lipphardt, A. Wolf, H. R. Telle: A novel stabilization method for an opptical frequency comb generator. IEEE Trans. Instrum. Meas. 48, 574–577 (1999)CrossRefGoogle Scholar
  115. 115.
    T. W. Hänsch, B. Couillaud: Laser frequency stabilization by polarisation spectroscopy of a reflecting reference cavity. Opt. Commun. 35, 441–444 (1980)ADSCrossRefGoogle Scholar
  116. 116.
    A. N. Luiten, R. P. Kovacich, J. J. McFerran: Optical frequency synthesis. In: Proc. 53rd International Frequency Control Symposium (FCS)/ 13th European Frequency and Time Forum, Besançon, France (1999) pp. 635–638Google Scholar
  117. 117.
    M. S. Demokan: Mode-Locking in Solid-State and Semiconductor Lasers (Wiley, Chichester 1982)Google Scholar
  118. 118.
    M. J. W. Rodwell, D. M. Bloom, K. J. Weingarten: Subpicosecond laser timing stabilization. IEEE J. Quantum Electron. 25, 817–827 (1989)ADSCrossRefGoogle Scholar
  119. 119.
    P. L. Hansen, Pedersen, P. Buchhave, T. Skettrup: Frequency tuning and stability of Nd:YVO4 in a dual coupled cavity. Opt. Commun. 127, 353–362 (1996)ADSCrossRefGoogle Scholar
  120. 120.
    M. Hyodo, T. Carty, K. Sakai: Near shot-noise-level relative frequency stabilization of a laser-diode-pumped Nd:YVO4 microchip laser. Appl. Opt. 35, 4749–4753 (1996)ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2001

Authors and Affiliations

  • Andre N. Luiten
    • 1
  1. 1.Frequency Standards and Metrology Group, Physics DepartmentUniversity of Western Australia (UWA)NedlandsAustralia

Personalised recommendations