Advertisement

Low-Noise Microwave Resonator-Oscillators: Current Status and Future Developments

  • Eugene N. Ivanov
  • Michael E. Tobar
Chapter
Part of the Topics in Applied Physics book series (TAP, volume 79)

Abstract

This contribution is devoted to principles of operation and design of low noise electromagnetic oscillators. We begin this chapter by introducing the concept of oscillator frequency stability and discussing both time and frequency domain approaches to its characterisation. We review most common experimental techniques used for improving the oscillator frequency stability. A particular attention is paid to applications of microwave circuit interferometry to precision measurements of oscillator frequency fluctuations. Finally, we analyse the future trends in the design of low noise microwave oscillators. This includes (i) interferometric suppression of oscillator power fluctuations and (ii) reduction of the oscillator frequency-temperature dependence by making use of an anisotropy of sapphire dielectric resonators.

Keywords

Phase Noise Noise Temperature Master Oscillator Microwave Oscillator Fourier Frequency 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    J. A. Barnes, A. R. Chi, L. S. Cutler, D. J. Healey, D. B. Leeson, T. E. McGunigal, J. A. Mullen Jr, W. L. Smith, R. L. Sydnov, R. F. C. Vessot, G. M. R. Winkler: Characterization of frequency stability. IEEE Trans. Instrum. Meas. 20, 105–120 (1971)CrossRefGoogle Scholar
  2. 2.
    C. Audoin, J. Vanier: The Quantum Physics of Atomic Frequency Standards (Hilger, Boston 1989)Google Scholar
  3. 3.
    R. Woode, M. E. Tobar, E. N. Ivanov, D. G. Blair: An ultra-low noise microwave oscillator based on a high-Q liquid nitrogen cooled sapphire resonator. IEEE Trans. Utrason. Ferroelec. Freq. Control 43, 936–941 (1996)CrossRefGoogle Scholar
  4. 4.
    E. N. Ivanov, M. E. Tobar, R. A. Woode: Microwave interferometry: Application to precision measurements and noise reduction techniques. IEEE Trans. Utrason. Ferroelec. Freq. Control 45, 1526–1536 (1998)CrossRefGoogle Scholar
  5. 5.
    E. N. Ivanov, M. E. Tobar, R. A. Woode: Applications of interferometric signal processing to phase noise reduction in microwave oscillators. IEEE Trans. Microwave Theory Tech. 46, 1537–1545 (1998)CrossRefADSGoogle Scholar
  6. 6.
    M. E. Tobar: Electric noise measurements. In: Encyclopedia of Electrical and Electronic Engineering, Vol. 6, J. G. Webster (Ed.) (Wiley, New York 1999)pp. 324–336Google Scholar
  7. 7.
    D. B. Leeson: Simple model of feedback oscillator noise spectrum. Proc. IEEE. Vol. 55, No. 2, 329–330 (1966)CrossRefGoogle Scholar
  8. 8.
    C. A. Flory, R. C. Taber: High performance distributed Bragg reflector microwave resonator. IEEE Trans. Utrason. Ferroelec. Freq. Control 44, 486–495 (1997)CrossRefGoogle Scholar
  9. 9.
    M. E. Tobar, D. G. Blair: Phase noise analysis of the sapphire loaded superconducting niobium cavity oscillator. IEEE Microwave Theory Tech. Symp. Dig. 477–480 (1992)Google Scholar
  10. 10.
    M. E. Tobar, D. G. Blair: Phase noise analysis of the sapphire loaded superconducting niobium cavity oscillator. IEEE Trans. Microwave Theory Tech. 42, 344–347 (1994)CrossRefADSGoogle Scholar
  11. 11.
    R. C. Taber, C. A. Flory: Microwave oscillators incorporating cryogenic sapphire dielectric resonators. IEEE Trans. Ultrason. Ferroelec. Freq. Control 42, 111–119 (1995)CrossRefGoogle Scholar
  12. 12.
    D. P. Tsarapkin: An uncooled microwave oscillator with 1-million effective Q-factor. 1993 IEEE Int. Freq. Control Symp. Proc. 47, 779–783 (1993)CrossRefGoogle Scholar
  13. 13.
    D. P. Tsarapkin, V. S. Komarov: Microwave oscillator with combined frequency stabilization system. Proc. Moscow Power Eng. Inst. 151, 82–86 (1973)Google Scholar
  14. 14.
    Z. Galani, M. J. Bianchini, J. R. C. Waterman, R. Dibiase, R. W. Layton, J. B. Cole: Analysis and design of a single-resonator GaAs FET oscillator with noise degradation. IEEE Trans. Microwave Theory Tech. 32, 1556–1565 (1984)CrossRefADSGoogle Scholar
  15. 15.
    G. Dick, D. Santiago: Microwave frequency discriminator with a cryogenic sapphire resonator for ultra-low phase noise. IEEE Freq. Control Symp. Proc. 46, 176–182 (1992)Google Scholar
  16. 16.
    F. L. Walls, C. M. Felton, T. Martin: High spectral purity X-Band source. IEEE Freq. Control Symp. Proc. 44, 542–547 (1990)Google Scholar
  17. 17.
    M. M. Driscoll, J. T. Haynes, S. S. Horwitz, R. A. Jelen, R. W. Weinert, J. R. Gavaler, J. Talvacchi, G. R. Wagner, K. A. Zaki, X. P. Liang: Cooled ultra-high Q, sapphire dielectric resonators for low noise microwave signal generation. IEEE Int. Freq. Control Symp. Proc. 45, 700–706 (1991)Google Scholar
  18. 18.
    M. E. Tobar, E. N. Ivanov, R. A. Woode, J. Searls, A. G. Mann: Low noise 9 GHz sapphire resonator-oscillator with thermoelectric temperature stabilisation at 300 K. IEEE Microwave Guided Wave Lett. 5, 108–110 (1995)CrossRefGoogle Scholar
  19. 19.
    C. Wong, W. F. Miccioli, D. M. Insana, C. A. Drubin: An extremely low noise, phase lockable, sapphire loaded cavity based microwave oscillator. IEEE 1999 Int. Microw. Theory Tech. Symp. Dig. (1999)pp. 91–94Google Scholar
  20. 20.
    Z. Galani, R. W. Laton, R. C. Waterman, R. DiBiase: Microwave oscillator U. S. Patent No. 4555678 (1983)Google Scholar
  21. 21.
    E. N. Ivanov, M. E. Tobar, R. A. Woode: Phase noise detector. U. S. Patent No. 5841322, PCT/WO95/32435 (1998)Google Scholar
  22. 22.
    M. M. Driscoll: Microwave oscillator with loop frequency conversion to and signal amplification at an intermediate frequency. U. S. Patent No. 5519359 (1995)Google Scholar
  23. 23.
    J.-J. Pan, M. P. Arnold: High-Q multimode resonator controlled source. U. S. Patent No. 4245193 (1981)Google Scholar
  24. 24.
    J. K. A. Everard, M. A. Page-Jones: Transposed gain microwave oscillators with low residual flicker noise. IEEE Int. Freq. Control Symp. Proc. 49, 374–377 (1995)Google Scholar
  25. 25.
    M. M. Driscoll, R. W. Weinert: Spectral performance of sapphire dielectric resonator controlled oscillators operating in the 80 K to 275 K temperature range. IEEE Int. Freq. Control Symp. Proc. 49, 401–412 (1995)Google Scholar
  26. 26.
    X. S. Yao, L. Maleki: Converting light into spectrally pure microwave oscillation. Opt. Lett. 21, 483–485 (1996)ADSCrossRefGoogle Scholar
  27. 27.
    X. S. Yao, L. Maleki: Optoelectronic microwave oscillator. J. Opt. Soc. Am. B 13, 1725–1735 (1996)ADSCrossRefGoogle Scholar
  28. 28.
    X. S. Yao, L. Maleki: Dual microwave and optical oscillator. Opt. Lett. 22, 1867–1869 (1997)ADSCrossRefGoogle Scholar
  29. 29.
    X. S. Yao, L. Maleki, Y. Ji, G. Lutes, M. Tu: Dual loop opto-electronic oscillator. IEEE Int. Freq. Control Symp. Proc. 52, 545–549 (1998)Google Scholar
  30. 30.
    J. Kitching, L. Hollberg, F. L. Walls: 1 GHz optical-delay-line oscillator driven by a diode laser. IEEE Int. Freq. Control Symp. Proc. 50, 807–814 (1996)CrossRefGoogle Scholar
  31. 31.
    W. P. N. Court: A tunable filter for use in the measurement of excess noise from local oscillators. Electron. Eng. April, 208–209 (1958)Google Scholar
  32. 32.
    J. G. Ondria: A microwave system for measurement of AM and PM noise spectra. IEEE Trans. Microwave Theory Tech. 16, 767–781 (1968)CrossRefADSGoogle Scholar
  33. 33.
    D. G. Santiago, G. J. Dick: Microwave frequency discriminator with a cooled sapphire resonator for ultra-low phase noise. IEEE Int. Freq. Control Symp. Proc. 46, 176–182 (1992)CrossRefGoogle Scholar
  34. 34.
    D. G. Santiago, G. J. Dick: Closed loop tests of the NASA sapphire phase stabilizer. IEEE Int. Freq. Control Symp. Proc. 47, 774–778 (1993)CrossRefGoogle Scholar
  35. 35.
    E. N. Ivanov, M. E. Tobar, R. A. Woode: Advanced phase noise suppression technique for the next generation of ultra-low noise microwave oscillators. IEEE Int. Freq. Control Symp. Proc. 49, 314–320 (1995)Google Scholar
  36. 36.
    E. N. Ivanov, M. E. Tobar, R. A. Woode: Ultra-low noise microwave oscillator with advanced phase noise suppression system. IEEE Microwave Guided Wave Lett. 6, 312–314 (1996)CrossRefGoogle Scholar
  37. 37.
    E. N. Ivanov, M. E. Tobar, R. A. Woode: Experimental study of noise phenomena in microwave components. IEEE Int. Freq. Control Symp. Proc. 50, 858–865 (1996)CrossRefGoogle Scholar
  38. 38.
    E. N. Ivanov, M. E. Tobar, R. A. Woode: A study of noise phenomena in microwave components using an advanced noise measurement system. IEEE Trans. Ultrason. Ferroelec. Freq. Control 44, 161–163 (1997)CrossRefGoogle Scholar
  39. 39.
    M. E. Tobar, E. N. Ivanov, P. Blondy, D. Cros, P. Guillon: High-Q whispering gallery travelling wave resonator for oscillator frequency stabilization. IEEE Trans. Ultrason. Ferroelec. Freq. Control 47, 421–426 (2000) in pressCrossRefGoogle Scholar
  40. 40.
    M. E. Tobar, A. Giles, S. Edwards, J. Searls: High-Q TE stabilized sapphire microwave resonators for low noise applications. IEEE Trans. Ultrason. Ferroelec. Freq. Control 41, 391–396 (1994)CrossRefGoogle Scholar
  41. 41.
    A. N. Luiten, A. G. Mann, D. G. Blair: Power stabilized exceptionally high stability cryogenic sapphire resonator oscillator. IEEE Trans. Instrum. Meas. 44, 132–135 (1995)CrossRefGoogle Scholar
  42. 42.
    M. E. Tobar, J. Krupka, E. N. Ivanov, R. A. Woode: Dielectric frequency-temperature-compensated microwave whispering-gallery-mode resonators. J. Phys. D 30, 2770–2775 (1997)CrossRefADSGoogle Scholar
  43. 43.
    M. E. Tobar, J. G. Hartnett, D. Cros, P. Blondy, J. Krupka, E. N. Ivanov, P. Guillon: Design of high-Q frequency-temperature compensated dielectric resonators. Electron. Lett. 35, 303–305 (1999)CrossRefGoogle Scholar
  44. 44.
    M. E. Tobar, J. Krupka, J. G. Hartnett, E. N. Ivanov, R. A. Woode: High-Q sapphire-rutile frequency-temperature compensated microwave dielectric resonators. IEEE Trans. Ultrason. Ferroelec. Freq. Control 45(3), 830–836 (1998)CrossRefGoogle Scholar
  45. 45.
    J. G. Hartnett, M. E. Tobar, A. G. Mann, E. N. Ivanov, J. Krupka, R. Geyer: Frequency-temperature compensation in Ti3+ and Ti4+ doped sapphire whispering gallery mode resonators. IEEE Trans. Ultrason. Ferroelec. Freq. Control 46, 993–1000 (1999)CrossRefGoogle Scholar
  46. 46.
    F. L. Walls: Fundamental limits on frequency stabilities of crystal oscillators. IEEE Trans. Ultrason. Ferroelec. Freq. Control 42, 576–589 (1995)CrossRefGoogle Scholar
  47. 47.
    D. P. Tsarapkin: Sapphire disk dielectric resonator coefficient of frequency dependence on temperature, disk configuration and resonant mode. IEEE Int. Freq. Control Symp. Proc. 48, 447–450 (1994)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2001

Authors and Affiliations

  • Eugene N. Ivanov
    • 1
  • Michael E. Tobar
    • 1
  1. 1.Frequency Standards and Metrology Research Group,Department of PhysicsUniversity of Western AustraliaNedlandsAustralia

Personalised recommendations