Advertisement

Ultrastable Cryogenic Microwave Oscillators

  • Anthony G. Mann
Chapter
Part of the Topics in Applied Physics book series (TAP, volume 79)

Abstract

Ultrastable cryogenic microwave oscillators are secondary frequency standards in the microwave domain. The best of these oscillators have demonstrated a short term frequency stability in the range 10−14 to a few times 10−16. The main application for these oscillators is as flywheel oscillators for the next generation of passive atomic frequency standards, and as local oscillators in space telemetry ground stations to clean up the transmitter close in phase noise. Fractional frequency stabilities of passive atomic frequency standards are now approaching 3 × 10−14/√τ where τ is the measurement time, limited only by the number of atoms that are being interrogated. This requires an interrogation oscillator whose short-term stability is of the order of 10−14 or better, which cannot be provided by present-day quartz technology. Ultrastable cryogenic microwave oscillators are based on resonators which have very high electrical Q-factors. The resolution of the resonator’s linewidth is typically limited by electronics noise to about 1 ppm and hence Q-factors in excess of 108 are required. As these are only attained in superconducting cavities or sapphire resonators at low temperatures, use of liquid helium cooling is mandatory, which has so far restricted these oscillators to the research or metrology laboratory. Recently, there has been an effort to dispense with the need for liquid helium and make compact flywheel oscillators for the new generation of primary frequency standards. Work is under way to achieve this goal in space-borne and mobile liquid-nitrogen-cooled systems. The best cryogenic oscillators developed to date are the “whispering gallery” (WG) mode sapphire resonator-oscillators of NASA’s Jet Propulsion Laboratory (JPL) and the University of Western Australia (UWA), as well as Stanford University’s superconducting cavity stabilized oscillator (SCSO). All of these oscillators have demonstrated frequency stabilities in the range of a few times 10−15 to a few times 10−16. In this contribution we review only liquid-helium-cooled secondary frequency standards, such as those just mentioned, which have attained frequency stabilities of 10-14 or better.

Keywords

Phase Noise Frequency Stability Liquid Helium Temperature Allan Deviation Sapphire Oscillator 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    S. R. Stein, J. P. Turneaure: Superconducting-cavity stabilized oscillators with improved frequency stability. Proc. IEEE 63, 1249–1250 (1975)ADSCrossRefGoogle Scholar
  2. 2.
    S. R. Stein, J. P. Turneaure: Development of the Superconducting Cavity Oscillator. (Freeman, New York 1988)pp. 414–430Google Scholar
  3. 3.
    J. A. Barnes: Characterization of frequency stability. IEEE Trans. Instrum. Meas. 20, 105–120 (1971)CrossRefGoogle Scholar
  4. 4.
    V. B. Braginsky, V. I. Panov: Superconducting resonators on sapphire. IEEE Trans. Magn. 15, 30–32 (1979)CrossRefADSGoogle Scholar
  5. 5.
    V. B. Braginsky, V. P. Mitrofanov, V. I. Panov: Systems With Small Dissipation. (Univ. Chicago Press, Chicago 1985)Google Scholar
  6. 6.
    V. B. Braginsky, V. S. Ilchenko, K. S. Bagdassarov: Experimental observation of fundamental microwave absorption in high quality dielectric crystals. Phys. Lett. A 120, 300–305 (1987)CrossRefADSGoogle Scholar
  7. 7.
    V. L. Gurevich, A. K. Tagantsev: Intrinsic dielectric loss in crystals: low temperatures. Sov. Phys. JETP 64, 142–151 (1986)Google Scholar
  8. 8.
    D. M. Strayer, G. J. Dick, J. E. Mercereau: Performance of a superconducting cavity stabilized ruby maser oscillator. IEEE Trans. Magn. 23, 1624–1628 (1987)CrossRefADSGoogle Scholar
  9. 9.
    G. J. Dick, R. T. Wang: Ultra-stable performance of the superconducting cavity maser. IEEE Trans. Instrum. Meas. 40, 174–177 (1991)CrossRefADSGoogle Scholar
  10. 10.
    A. J. Giles, A. G. Mann, S. K. Jones, D. G. Blair, M. J. Buckingham: A very high stability sapphire loaded superconducting cavity oscillator. Physica B 165, 145–146 (1990)CrossRefADSGoogle Scholar
  11. 11.
    A. J. Giles, S. K. Jones, D. G. Blair, M. J. Buckingham: A high stability microwave oscillator based on a sapphire loaded superconducting cavity. IEEE Freq. Control Symp. Proc. 43, 89–93 (1989)Google Scholar
  12. 12.
    A. N. Luiten, A. G. Mann, M. E. Costa, D. G. Blair: Power stabilized cryogenic sapphire resonator oscillator. IEEE Trans. Instrum. Meas. 44, 132–135 (1995)CrossRefGoogle Scholar
  13. 13.
    A. N. Luiten, A. G. Mann, D. G. Blair: Cryogenic sapphire microwave resonator-oscillator with exceptional stability. Electron. Lett. 30, 417–419 (1994)CrossRefGoogle Scholar
  14. 14.
    Crystal Systems Inc., 27 Congress St., Salem, MA 01970, USA, private communicationGoogle Scholar
  15. 15.
    A. N. Luiten, A. G. Mann, D. G. Blair: Ultra High-Q factor cryogenic sapphire resonator. Electron. Lett. 29, 879–881 (1993)CrossRefADSGoogle Scholar
  16. 16.
    A. N. Luiten, A. G. Mann, D. G. Blair: Paramagnetic susceptibility and permittivity measurements at microwave frequencies in cryogenic sapphire resonators. J. Phys. D 29, 2082–2090 (1996)CrossRefADSGoogle Scholar
  17. 17.
    A. N. Luiten, A. G. Mann, N. McDonald, D. G. Blair: Latest results of the UWA cryogenic sapphire oscillator. IEEE Freq. Control Symp. Proc. 49, 433–437 (1995)Google Scholar
  18. 18.
    G. J. Dick, R. T.Wang: Cryo-cooled sapphire oscillator for the Cassini Ka-band experiment. IEEE Int. Freq. Control Symp. Proc. 51, 1009–1014 (1997)CrossRefGoogle Scholar
  19. 19.
    G. J. Dick, R. T.Wang, R. T. Tjoelker: Cryo-cooled sapphire oscillator with ultra-high stability. IEEE Int. Freq. Control Symp. Proc. 52, 528–533 (1998)Google Scholar
  20. 20.
    J. P. Turneaure, S. Stein: Atomic Masses and Fundamental Constants V (Plenum, New York 1976)pp. 636–642Google Scholar
  21. 21.
    G. Santarelli, P. Laurent, A. Clairon, G. J. Dick, C. A. Greenhall, C. Audoin: Theoretical description and experimental evaluation of the effect of the interrogation oscillator frequency noise on the stability of a pulsed atomic frequency standard. IEEE 10th Europ. Freq. Time Forum, Conf. Publ. No 418 (1996)pp. 66–71Google Scholar
  22. 22.
    G. D. Rovera, G. Santarelli, A. Clairon: Frequency synthesis chain for the atomic fountain primary frequency standard. IEEE Trans. Ultrason. Ferroelec. Freq. Control 43, 354–358 (1996)CrossRefGoogle Scholar
  23. 23.
    P. T. H. Fisk, M. J. Sellars, M. A. Lawn, C. Coles: Accurate measurement of the 12.6 GHz “Clock” transition in trapped 171Yb+. IEEE Trans. Ultrason. Ferroelec. Freq. Control 44, 344–354 (1997)CrossRefGoogle Scholar
  24. 24.
    A. G. Mann, G. Santarelli, S. Chang, A. N. Luiten, P. Laurent, C. Salomon, D. G. Blair, A. Clairon: A high stability atomic fountain clock using a cryogenic sapphire interrogation oscillator. IEEE Freq. Control Symp. Proc. 52, 13–22 (1998)Google Scholar
  25. 25.
    R. L. Toelker, C. Bricker, W. Diener, R. L. Hamell, A. Kirk, P. Kuhnle, L. Maleki, J. D. Prestage, D. Santiago, D. Seidel, D. A. Stowers, R. L. Syndnor, T. Tucker: A mercury ion frequency standard engineering prototype for the NASA Deep Space Network. IEEE Int. Freq. Control Symp. Proc. 50, 1073–1081 (1996)CrossRefGoogle Scholar
  26. 26.
    T. C. P. Chui, P. Day, I. Hahn, A. E. Nash, D. R. Swanson, J. A. Nissem, P. R. Williamson, J. A. Lipa: High resolution thermometers for ground and space applications. Cryogenics 34, 417–420 (1994)CrossRefADSGoogle Scholar
  27. 27.
    S. Buchman, J. P. Turneaure, J. A. Lipa, M. Dong, K. M. Cumbermack, S. Wang: A superconducting microwave oscillator clock for use on the space station. IEEE Int. Freq. Control Symp. Proc. 52, 534–539 (1998)Google Scholar
  28. 28.
    J. Krupka, K. Derzakowski, A. Abramowicz, M. Tobar, R. Geyer: Complex permittivity measurements of extremely low loss dielectric materials using whispering gallery modes. 1997 IEEE Int. Microwave Symp. Dig. 3, 1347–1350 (1997)CrossRefGoogle Scholar
  29. 29.
    B. M. Garin: One phonon dielectric losses by excitation of sound. Sov. Phys. Solid State 32, 1917–1920 (1990)Google Scholar
  30. 30.
    A. G. Mann, A. N. Luiten, D. G. Blair, M. J. Buckingham: Ultrastable cryogenic sapphire dielectric microwave resonators. Proc. IEEE Freq. Control Symp. 46, 167–171 (1992)CrossRefGoogle Scholar
  31. 31.
    S. Thakoor, D. M. Strayer, G. J. Dick, J. E. Mercereau: A lead-on-sapphire superconducting cavity of superior quality. J. Appl. Phys. 59, 854–858 (1986)CrossRefADSGoogle Scholar
  32. 32.
    D. G. Blair, S. Chang, E. N. Ivanov, A. N. Luiten, A. G. Mann, M. E. Tobar, R. A. Woode: Ultrastable and ultralow phase noise microwave sapphire oscillators. Proc. NASA Workshop on the Scientific Applications of Clocks in Space, JPL pub 97-15, 101–125 (1996)Google Scholar
  33. 33.
    S. N. Buckley, P. Agnew, G. P. Pells: Cryogenic dielectric properties of sapphire at 2.45 GHz. J. Phys. D 27, 2202–2209 (1994)CrossRefADSGoogle Scholar
  34. 34.
    A. G. Mann, D. G. Blair, M. J. Buckingham: Ultra-stable cryogenic sapphire dielectric microwave resonators: mode frequency—temperature compensation by residual paramagnetic impurities. J. Phys. D 25, 1105–1109 (1992)CrossRefADSGoogle Scholar
  35. 35.
    J. G. Hartnett, M. E. Tobar, A. G. Mann, J. Krupka, E. N. Ivanov: Temperature dependence of Ti3+ doped sapphire whispering gallery mode resonator. Electron. Lett. 34, 195–196 (1998)CrossRefGoogle Scholar
  36. 36.
    J. G. Hartnett, M. E. Tobar, A. G. Mann, E. N. Ivanov, J. Krupka, R. Geyer: Frequency-temperature compensation in Ti3+ and Ti4+ doped sapphire whispering gallery mode resonators. IEEE Trans. Ultrason. Ferroelec. Freq. Control 46, 993–1000 (1999)CrossRefGoogle Scholar
  37. 37.
    A. N. Luiten: Sapphire secondary frequency standards. Ph.D. thesis, Physics Department, University of Western Australia (1995)Google Scholar
  38. 38.
    S. K. Jones, D. G. Blair, M. J. Buckingham: The effects of paramagnetic impurities on the frequency of sapphire loading superconducting resonators. Electron. Lett. 24, 346–347 (1988)CrossRefGoogle Scholar
  39. 39.
    A. N. Luiten, A. G. Mann, A. J. Giles, D. G. Blair: Ultra-stable sapphire resonator-oscillator. IEEE Trans. Instrum. Meas. 42, 439–443 (1993)CrossRefGoogle Scholar
  40. 40.
    L. S. Kornienko, A. M. Prokhorov: Electronic paramagnetic resonance of the Ti3+ ion in corundum. Sov. Phys. JETP 11, 1189–1190 (1960)Google Scholar
  41. 41.
    S. Chang, A. G. Mann, A. N. Luiten, D. G. Blair: Measurements of radiation pressure effect in cryogenic sapphire dielectric resonators. Phys. Rev. Lett. 79, 2141–2144 (1997)CrossRefADSGoogle Scholar
  42. 42.
    D. G. Santiago, G. J. Dick, A. Prata: Mode control of cryogenic whispering-gallery mode sapphire dielectric-ring resonators. IEEE Trans. Microwave Theory Tech. 42, 52–55 (1994)CrossRefADSGoogle Scholar
  43. 43.
    D. G. Santiago, G. J. Dick: Microwave frequency discriminator with a cryogenic sapphire resonator for ultra-low phase noise. IEEE Freq. Control Symp. Proc. 46, 176–182 (1992)CrossRefGoogle Scholar
  44. 44.
    R. C. Taber, C. A. Florey: Microwave oscillators incorporating cryogenic sapphire dielectric resonators. IEEE Trans. Ultrason. Ferroelec. Freq. Control 42, 111–119 (1995)CrossRefGoogle Scholar
  45. 45.
    M. E. Tobar, A. J. Giles, S. Edwards, J. Searls: High-Q thermo-electric stabilized sapphire microwave resonators for low noise applications. IEEE Trans. Ultrason. Ferroelec. Freq. Control 41, 391–396 (1994)CrossRefGoogle Scholar
  46. 46.
    V. B. Braginskii, S. P. Vyatchanin, V. I. Panov: Limiting stability of the frequency of self-excited oscillators. Sov. Phys. Doklady 24, 562–563 (1979)ADSGoogle Scholar
  47. 47.
    D. G. Santiago, G. J. Dick, R. T. Wang: Frequency stability of 10-13 in a compensated sapphire oscillator operating above 77 K. IEEE Int. Freq. Control Symp. Proc. 50, 772–775 (1996)CrossRefGoogle Scholar
  48. 48.
    P. Boolchand, G. H. Lemon, W. J. Bresser, R. N. Enzweller, R. Harris: A general purpose cold finger using a vibration-free mounted He closed-cycle cryostat. Rev. Sci. Instrum. 66, 3015–3057 (1995)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2001

Authors and Affiliations

  • Anthony G. Mann
    • 1
  1. 1.Department of PhysicsUniversity of Western AustraliaNedlandsAustralia

Personalised recommendations