Advertisement

Frequency-Temperature Compensation Techniques for High-Q Microwave Resonators

  • John G. Hartnett
  • Michael E. Tobar
Chapter
  • 487 Downloads
Part of the Topics in Applied Physics book series (TAP, volume 79)

Abstract

Low-noise high-stability resonator oscillators based on high-Q monolithic sapphire “Whispering Gallery” (WG)-mode resonators have become important devices for telecommunication, radar and metrological applications. The extremely high quality factor of sapphire, of 2 × 105 at room temperature, 5 × 107 at liquid nitrogen temperature and 5 × 109 at liquid helium temperature has enabled the lowest phase noise and highly frequency-stable oscillators in the microwave regime to be constructed. To create an oscillator with exceptional frequency stability, the resonator must have its frequency—temperature dependence annulled at some temperature, as well as a high quality factor. The Temperature Coefficient of Permittivity (TCP) for sapphire is quite large, at 10-100 parts per million/K above 77 K. This mechanism allows temperature fluctuations to transform to resonator frequency fluctuations.

A number of research groups worldwide have investigated various methods of compensating the TCP of a sapphire dielectric resonator at different temperatures. The usual electromagnetic technique of annulment involves the use of paramagnetic impurities contributing an opposite temperature coefficient of the magnetic susceptibility to the TCP. This technique has only been realized successfully in liquid helium environments. Near 4 K the thermal expansion and permittivity effects are small and only small quantities of the paramagnetic ions are necessary to compensate the mode frequency. Compensation is due to impurity ions that were incidentally left over from the manufacturing process.

Recently, there has been an effort to dispense with the need for liquid helium and make a compact flywheel oscillator for the new generation of primary frequency standards such as the cesium fountain at the Laboratoire Primaire du Temps et des Fréquences (LPTF), France. To achieve the stability limit imposed by quantum projection noise requires that the local oscillator stability is of the order of 10−14. Currently work is under way to achieve this goal in space-borne and mobile liquid-nitrogen-cooled systems. The work appears promising and, as at early 2000, the realization of this goal should not be far off.

In this contribution we review techniques that cancel the TCP of sapphire and other dielectric resonators. Details of the temperature control system required to achieve current and target frequency stabilities are discussed.

Keywords

Temperature Compensation Dielectric Resonator Strontium Titanate Whisper Gallery Mode Microwave Theory Tech 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    J. Krupka, K. Derzakowski, A. Abramowicz, M. E. Tobar, R. Geyer: Use of whispering gallery modes for complex permittivity determinations of ultra-low-loss dielectric materials. IEEE Trans. Microwave Theory Tech. 47, 752–759 (1999)CrossRefADSGoogle Scholar
  2. 2.
    M. E. Tobar, A. G. Mann: Resonant frequencies of high order modes in cylindrical anisotropic dielectric resonators. IEEE Trans. Microwave Theory Tech. 39, 2077–2083 (1991)CrossRefADSGoogle Scholar
  3. 3.
    D. G. Blair, I. N. Evans: high-Q microwave properties of a ring resonator. J. Phys. D 15, 1651–1656 (1982)CrossRefADSGoogle Scholar
  4. 4.
    S. N. Bunkov, B. A. Vtorushin, V. N. Yegorov, V. I. Konstantinov, V. L. Masalov, P. V. Smirnov: Cooled dielectric resonators for frequency stabilization. Radiotekhnika electronika 5, 1071–1080 (1987)ADSGoogle Scholar
  5. 5.
    V. I. Kalinichev, P. N. Vadov: A numerical investigation of the excitation of a dielectric resonator by a dielectric waveguide. Radiotekhnika electronika 3, 464–473 (1988)ADSGoogle Scholar
  6. 6.
    V. F. Vzyatyshev, V. I. Kalinichev, V. I. Kuimov: Physics of shielded dielectric resonators and problems of their design. Radiotekhnika electronika 4, 705–712 (1985)ADSGoogle Scholar
  7. 7.
    V. I. Panov, P. R. Stankov: Frequency stabilization of oscillators by high-Q dielectric resonators made from leucosapphire. Radiotekhnika electronika 1, 213–216 (1986)ADSGoogle Scholar
  8. 8.
    S. L. Abramov, E. N. Ivanov, D. P. Tsarapkin: Low noise microwave oscillator with a temperature stabilized disk dielectric resonator. Radiotechnika electronika 11, 81–83 (1988)Google Scholar
  9. 9.
    G. J. Dick, D. G. Santiago, R. T. Wang: Temperature compensated sapphire resonator for ultra-stable oscillator capability at temperatures above 77 Kelvin. IEEE Freq. Control Symp. Proc. 48, 421–432 (1994)CrossRefGoogle Scholar
  10. 10.
    M. E. Tobar, J. Krupka, J. G. Hartnett, E. N. Ivanov, R. A. Woode: Sapphire—rutile frequency—temperature compensated whispering gallery microwave resonators. IEEE Freq. Control Symp. Proc. 51, 1000–1008 (1997)CrossRefGoogle Scholar
  11. 11.
    M. E. Tobar, J. Krupka, J. G. Hartnett, E. N. Ivanov, R. A. Woode: high-Q Sapphire-rutile frequency—temperature compensated microwave dielectric resonators. IEEE Trans. Ultrason. Ferroel. Freq. Control 45, 830–836 (1998)CrossRefGoogle Scholar
  12. 12.
    L. Hao, N. Klein, W. J. Radcliffe, J. C. Gallop, I. S. Ghosh: Temperature compensated cryogenic whispering gallery mode resonator for microwave frequency standard applications. 1998 Conf. on Precision Electromagnetic Measurements, Tech. Dig. (1998)pp. 63–65Google Scholar
  13. 13.
    I. S. Ghosh, D. Schemion, N. Klein: Temperature compensated high-Q dielectric resonators for long term stable low phase noise oscillators. IEEE Int. Freq. Control Symp. Proc. 51, 1024–1029 (1997)CrossRefGoogle Scholar
  14. 14.
    S. K. Jones, D. G. Blair, M. J. Buckingham: The effects of paramagnetic impurities on the frequency of sapphire loading superconducting resonators. Electron. Lett. 24, 346–347 (1988)CrossRefGoogle Scholar
  15. 15.
    A. N. Luiten, A. G. Mann, D. G. Blair: Paramagnetic susceptibility and permittivity measurements at microwave frequencies in cryogenic sapphire resonators. J. Phys. D 29, 2082–2090 (1996)CrossRefADSGoogle Scholar
  16. 16.
    A. N. Luiten, A. G. Mann, N. J. McDonald, D. G. Blair: Latest results of the UWA cryogenic sapphire oscillator. IEEE Freq. Control Symp. Proc. 49, 433–437 (1995)Google Scholar
  17. 17.
    A. G. Mann, A. J. Giles, D. G. Blair, M. J. Buckingham: Ultra-stable cryogenic sapphire dielectric microwave resonators: mode frequency—temperature compensation by residual paramagnetic impurities. J. Phys. D 25, 1105–1109 (1992)CrossRefADSGoogle Scholar
  18. 18.
    J. G. Hartnett, M. E. Tobar, A. G. Mann, E. N. Ivanov, J. Krupka: frequency-temperature compensation in Ti3+ and Ti4+ doped sapphire whispering gallery mode resonators. IEEE Int. Freq. Control Symp. Proc. 52, 512–517 (1998)Google Scholar
  19. 19.
    J. G. Hartnett, M. E. Tobar, A. G. Mann, E. N. Ivanov, J. Krupka, R. Geyer: frequency-temperature compensation in Ti3+ and Ti4+ doped sapphire whispering gallery mode resonators. IEEE Trans. Ultrason. Ferroel. Freq. Control 46, 993–999 (1999)CrossRefGoogle Scholar
  20. 20.
    J. G. Hartnett, M. E. Tobar, A. G. Mann, E. N. Ivanov, J. Krupka, E. N. Ivanov: Temperature dependence of Ti3+ doped sapphire whispering gallery mode resonator. Electron. Lett. 34, 195–196 (1998)CrossRefGoogle Scholar
  21. 21.
    G. J. Dick, R. T. Wang: Cryo-cooled sapphire oscillator for the cassini Ka-band experiment. IEEE Int. Freq. Cont. Symp. Proc. 51, 1009–1014 (1997)CrossRefGoogle Scholar
  22. 22.
    G. J. Dick, R. T. Wang, R. T. Tjoelker: Cryo-cooled sapphire oscillator with ultra-high stability. IEEE Int. Freq. Cont. Symp. Proc. 52, 528–533 (1998)Google Scholar
  23. 23.
    R. Shelby, J. Fontanella: The low temperature electrical properties of some anisotropic crystals. J. Phys. Chem. Solids. 41, 69–74 (1980)CrossRefADSGoogle Scholar
  24. 24.
    Y. Kobayashi, T. Senju: Resonant modes in shielded uniaxial-anisotropic dielectric rod resonators. IEEE Trans. Microwave Theory Tech. 41, 2198–2205 (1993)CrossRefADSGoogle Scholar
  25. 25.
    D. Kajfez, P. Guillon: Dielectric Resonators (Artech House, Norwood, MA 1986)Google Scholar
  26. 26.
    C. E. Byvik, A. M. Buoncristiani: Analysis of vibronic transitions in titanium doped sapphire using the temperature of the fluorescence spectra. IEEE J. Quantum Electron. 21, 1619–1623 (1985)CrossRefADSGoogle Scholar
  27. 27.
    R. L. Carlin, A. J. van Duyneveldt: Magnetic Properties of Transistion Metal Compounds, Inorganic Chem. Concepts, Vol. 2 (Springer, New York 1977)Google Scholar
  28. 28.
    V. B. Braginsky, V. P. Mitrofanov, V. I. Panov: Systems With Small Dissipation (Univ. Chicago Press, Chicago 1985)Google Scholar
  29. 29.
    G. K. White: Reference materials for thermal expansion: certified or not? Thermochim. Acta 218, 83–99 (1993)CrossRefGoogle Scholar
  30. 30.
    Y. S. Touloukian et al. (Series Editor Y. S. Touloukian): Thermophysical Properties of Matter Vols. 2, 4 (IFI/Plenum, New York 1970)Google Scholar
  31. 31.
    A. N. Luiten, M. E. Tobar, J. Krupka, R. A. Woode, E. N. Ivanov, A. G. Mann: Microwave properties of a rutile resonator between 2 and 10 K. J. Phys. D 31, 1383–1391 (1998)CrossRefADSGoogle Scholar
  32. 32.
    M. E. Tobar, J. Krupka, E. N. Ivanov, R. A. Woode: Anisotropic complex permittivity measurements of mono-crystalline rutile between 10-300 Kelvin. J. Appl. Phys. 83, 1604–1609 (1998)CrossRefADSGoogle Scholar
  33. 33.
    G. K. White: Private communication (1996)Google Scholar
  34. 34.
    M. E. Tobar, D. G. Blair: A generalized equivalent circuit applied to a tunable sapphire loaded superconducting cavity. IEEE Trans. Microwave Theory Tech. 39, 1582–1593 (1991)CrossRefADSGoogle Scholar
  35. 35.
    I. A. Bilenko, E. N. Ivanov, M. E. Tobar, D. G. Blair: Sapphire high-Q low temperature transducer for resonant bar gravitational wave antennas. Phys. Lett. A 211, 139–142 (1996)CrossRefADSGoogle Scholar
  36. 36.
    A. J. Giles, A. G. Mann, S. K. Jones, D. Blair, M. Buckingham: A very high stability sapphire loaded superconducting cavity oscillator. Physica B 165, 145–146 (1990)CrossRefADSGoogle Scholar
  37. 37.
    A. N. Luiten: Sapphire Secondary Frequency Standards. Ph.D. thesis, University of Western Australia (1995)Google Scholar
  38. 38.
    A. G. Mann, G. Santarelli, S. Chang, A. Luiten, P. Laurent, C. Salomon, D. G. Blair, A. Clairon: A high stability atomic fountain clock using a cryogenic sapphire interrogation oscillator. IEEE Freq. Control Symp. Proc. 52, 13–22 (1998)Google Scholar
  39. 39.
    M. E. Tobar, J. G. Hartnett, D. Cros, P. Blondy, J. Krupka, E. N. Ivanov, P. Guillon: Design of high-Q frequency—temperature compensated dielectric resonators. Electron. Lett. 35, 303–304 (1999)CrossRefGoogle Scholar
  40. 40.
    M. E. Tobar, J. Krupka, R. A. Woode, E. N. Ivanov: Dielectric frequency-temperature compensation of high quality sapphire dielectric resonators. IEEE Int. Freq. Control Symp. Proc. 50, 799–806 (1996)CrossRefGoogle Scholar
  41. 41.
    J. G. Hartnett, M. E. Tobar, A. G. Mann, J. Krupka, E. N. Ivanov, S. N. Jacobsen, L. Madsen, U. Helmersson: Electromagnetic frequency—temperature compensation techniques for high-Q sapphire resonators. Proc. Asia Pacific Microwave Conf. Yokohama Japan pp. 159–162 (1998)Google Scholar
  42. 42.
    D. M. Strayer, G. J. Dick, J. E. Mercereau: Performance of a superconducting cavity stabilized ruby maser oscillator. IEEE Trans Magn. 23, 1624–1628 (1987)CrossRefADSGoogle Scholar
  43. 43.
    V. B. Braginsky, V. I. Panov: Superconducting resonators on sapphire. IEEE Trans. Magn. 15, 30–32 (1979)CrossRefADSGoogle Scholar
  44. 44.
    S. R. Stein, J. P. Turneaure: Superconducting-cavity stabilized oscillators with improved frequency stability. Proc. IEEE 63, 1249–1250 (1975)ADSCrossRefGoogle Scholar
  45. 45.
    G. J. Dick, D. G. Santiago, R. T. Wang: Temperature-compensated sapphire resonator for ultra-stable oscillator capability at temperature above 77 K. IEEE Trans. Ultrason. Ferroelec. Freq. Control 42, 815–819 (1995)CrossRefGoogle Scholar
  46. 46.
    D. G. Santiago, G. J. Dick, R. T. Wang: Frequency stability of 10−13 in a compensated sapphire oscillator operating above 77 K. IEEE Int. Freq. Control Symp. Proc. 50, 772–775 (1996)CrossRefGoogle Scholar
  47. 47.
    D. G. Santiago, R. T. Wang, G. J. Dick: Improved performance of a temperature compensated LN2 cooled sapphire oscillator. IEEE Int. Freq. Control Symp. Proc. 49, 397–400 (1995)Google Scholar
  48. 48.
    P. Boolchand, G. H. Lemon, W. J. Bresser, R. N. Enzweller, R. Harris: A general purpose cold finger using a vibration-free mounted He closed-cycle cryostat. Rev. Sci. Instrum. 66, 3015–3057 (1995)CrossRefGoogle Scholar
  49. 49.
    C. D. Langham, J. C. Gallop: Performance of a cryogenic sapphire dielectric resonator. Proc. 1996 Europ. Frequency and Time Forum, 10, 266–269 (1996)Google Scholar
  50. 50.
    C. D. Langham, J. C. Gallop: Cryogenic sapphire dielectric resonators: performance and potential. IEEE Trans Instrum. Meas. 46, 130–132 (1997)CrossRefGoogle Scholar
  51. 51.
    S. Buchman, J. P. Turneaure, J. A. Lipa, M. Dong, K. M. Cumbermack, S. Wang: A superconducting microwave oscillator clock for use on the space station. Int. Freq. Control Symp. Proc. 52, 534–539 (1998)Google Scholar
  52. 52.
    M. E. Tobar, D. Cros, P. Blondy, J. G. Hartnett, P. Guillon: Finite element realization of ultra-high quality factor frequency—temperature compensated Sapphire—rutile whispering gallery mode resonators. Proc. 1999 Int. Microwave Symp., pp. 1323–1326 (1999)Google Scholar
  53. 53.
    M. Aubourg, P. Guillon: A mixed finite element formulation for microwave device problems: Application to MIS structure. J. Electromag. Waves Appl. 45, 371–386 (1991)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2001

Authors and Affiliations

  • John G. Hartnett
    • 1
  • Michael E. Tobar
    • 1
  1. 1.Frequency Standards and Metrology Research Group, Department of PhysicsUniversity of Western AustraliaNedlandsAustralia

Personalised recommendations