Advertisement

Cold-Atom Clocks on Earth and in Space

  • Pierre Lemonde
  • Philippe Laurent
  • Giorgio Santarelli
  • Michel Abgrall
  • Yvan Sortais
  • Sébastien Bize
  • Christophe Nicolas
  • Shougang Zhang
  • André Clairon
  • Noël Dimarcq
  • Pierre Petit
  • Antony G. Mann
  • Andre N. Luiten
  • Sheng Chang
  • Christophe Salomon
Chapter
Part of the Topics in Applied Physics book series (TAP, volume 79)

Abstract

We present recent progress on microwave clocks that make use of lasercooled atoms. With an ultra-stable cryogenic sapphire oscillator as interrogation oscillator, a cesium fountain operates at the quantum projection noise limit. With 6 × 105 detected atoms, the relative frequency stability is 4 × 10−14 τ −1/2, where τ is the integration time in seconds. This stability is comparable to that of hydrogen masers. At τ = 2 × 104 s, the measured stability reaches 6 × 10−16. A 87Rb fountain has also been constructed and the 87Rb ground-state hyperfine energy has been compared to the Cs primary standard with a relative accuracy of 2.5 × 10−15. The 87Rb collisional shift is found to be at least 30 times below that of cesium. We also describe a transportable cesium fountain, which will be used for frequency comparisons with an accuracy of 10−15 or below. Finally, we present the details of a space mission for a cesium standard which has been selected by the European Space Agency (ESA) to fly on the International Space Station in 2003.

Keywords

European Space Agency Frequency Stability Frequency Standard Detection Zone Hydrogen Maser 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    J. Zacharias: unpublished (1953) as described in [3]Google Scholar
  2. 2.
    N. Ramsey: Molecular beam resonance method with separated oscillating fields. Phys. Rev. 78, 695–698 (1950)CrossRefADSGoogle Scholar
  3. 3.
    N. Ramsey: Molecular Beams (Oxford Univ. Press, Oxford 1985)Google Scholar
  4. 4.
    S. Chu: The manipulation of neutral particles. Rev. Mod. Phys. 70, 685–706 (1998)CrossRefADSGoogle Scholar
  5. 5.
    C. Cohen-Tannoudji: Manipulating atoms with photons. Rev. Mod. Phys. 70, 707–720 (1998)CrossRefADSGoogle Scholar
  6. 6.
    W. Phillips: Laser cooling and trapping of neutral atoms. Rev. Mod. Phys. 70, 721–742 (1998)CrossRefADSGoogle Scholar
  7. 7.
    A. De Marchi: The optically pumped caesium fountain: 10−15 accuracy? Metrologia 18, 103–116 (1982)CrossRefADSGoogle Scholar
  8. 8.
    G. Beausoleil, T. W. Hänsch: Ultrahigh-resolution two-photon optical Ramsey spectroscopy of an atomic fountain. Phys. Rev. A 33, 1661–1670 (1986)CrossRefADSGoogle Scholar
  9. 9.
    J. Hall, M. Zhu, P. Buch: Prospects for using laser-prepared atomic fountains for optical frequency standards applications. J. Opt. Soc. Am. B 6, 2194–2205 (1989)ADSCrossRefGoogle Scholar
  10. 10.
    M. Kasevich, E. Riis, S. Chu, R. de Voe: RF spectroscopy in an atomic fountain. Phys. Rev. Lett. 63, 612–615 (1989)CrossRefADSGoogle Scholar
  11. 11.
    C. Monroe, H. Robinson, C. Wieman: Observation of the cesium clock transition using laser-cooled atoms in a vapor cell. Opt. Lett. 16, 50–52 (1991)ADSCrossRefGoogle Scholar
  12. 12.
    A. Clairon, C. Salomon, S. Guellati, W. Phillips: Ramsey resonance in a Zacharias fountain. Europhys. Lett. 16, 165–170 (1991)CrossRefADSGoogle Scholar
  13. 13.
    P. Lett, R. Watts, C. Westbrook, W. Phillips, P. Gould, H. Metcalf: Observation of atoms laser cooled below the Doppler limit. Phys. Rev. Lett. 61, 169–172 (1988)CrossRefADSGoogle Scholar
  14. 14.
    J. Dalibard, C. Cohen-Tannoudji: Laser cooling below the Doppler limit by polarization gradients: simple theoretical models. J. Opt. Soc. Am. B 6, 2023–2045 (1989)ADSCrossRefGoogle Scholar
  15. 15.
    P. Ungar, D. Weiss, E. Riis, S. Chu: Optical molasses and multilevel atoms: theory. J. Opt. Soc. Am. B 6, 2058–2071 (1989)ADSCrossRefGoogle Scholar
  16. 16.
    C. Salomon, J. Dalibard, W. Phillips, A. Clairon, S. Guellati: Laser cooling of cesium atoms below 3µEurophys. Lett. 12, 683–688 (1990)CrossRefADSGoogle Scholar
  17. 17.
    A. Bauch, T. Heindorff: The primary cesium atomic clocks of the PTB. In: Proc. Fourth Symposium on Frequency Standards and Metrology, A. DeMarchi (Ed.) (Springer, Berlin, Heidelberg 1989)pp. 370–373Google Scholar
  18. 18.
    K. Gibble, S. Chu: Future slow-atom frequency standards. Metrologia 29, 201–212 (1992)CrossRefADSGoogle Scholar
  19. 19.
    See for instance Proc. Joint Meeting 13 th EFTF and 53 rd IEEE Freq. Contr. Symposium, Besançon, France (1999)Google Scholar
  20. 20.
    See for instance, P. Berman (Ed.): Atom Interferometry (Academic, San Diego 1997)Google Scholar
  21. 21.
    E. Simon, P. Laurent, A. Clairon: Measurement of the Stark shift of the Cs hyperfine splitting in an atomic fountain. Phys. Rev. A 57, 436–439 (1998)CrossRefADSGoogle Scholar
  22. 22.
    K. Szymaniec, H. J. Davies, C. S. Adams: An atomic fountain guided by a far-off resonance laser beam. Europhys. Lett. 45, 450–455 (1999)CrossRefADSGoogle Scholar
  23. 23.
    K. Gibble, S. Chu: A laser cooled Cs frequency standard and a measurement of the frequency shift due to ultra-cold collisions. Phys. Rev. Lett. 70, 1771–1774 (1993)CrossRefADSGoogle Scholar
  24. 24.
    K. Gibble: Collisional effects in cold alkalis. In: Proc. Fifth Symposium on Frequency Standards and Metrology, J. Bergquist (Ed.) (World Scientific, Singapore 1996)pp. 66–73Google Scholar
  25. 25.
    G. Dudle, N. Sagna, P. Thomann, E. Aucouturier, P. Petit, N. Dimarcq: Generation of a continuous beam of cold cesium atoms.In: Proc. Fifth Symposium on Frequency Standards and Metrology, J. Bergquist (Ed.) (World Scientific, Singapore 1996)pp. 121–126Google Scholar
  26. 26.
    S. Oshima, T. Kurosu, T. Ikegami, Y. Nakadan: Multipulse operation of a cesium fountain. In: Proc. Fifth Symposium on Frequency Standards and Metrology, J. Bergquist (Ed.) (World Scientific, Singapore 1996)pp. 60–65Google Scholar
  27. 27.
    R. Legere, K. Gibble: Quantum scattering in a juggling atomic fountain. Phys. Rev. Lett. 81, 5780–5783 (1998)CrossRefADSGoogle Scholar
  28. 28.
    A. Clairon, P. Laurent, G. Santarelli, S. Ghezali, S. Lea, M. Bahoura: A cesium fountain frequency standard: preliminary results. IEEE Trans. Instrum. Meas. 44, 128–131 (1995)CrossRefGoogle Scholar
  29. 29.
    A. Clairon, S. Ghezali, G. Santarelli, P. Laurent, S. Lea, M. Bahoura, E. Simon, S. Weyers, K. Szymaniec: Preliminary accuracy evaluation of a cesium fountain frequency standard. In: Proc. Fifth Symposium on Frequency Standards and Metrology, J. Bergquist (Ed.) (World Scientific, Singapore 1996)pp. 49–59 (1996)Google Scholar
  30. 30.
    G. Dick: Local oscillator induced instabilities in trapped ion frequency standards. In: Proc. of Precise Time and Time Interval, Redendo Beach (1987)pp. 133–147Google Scholar
  31. 31.
    G. Santarelli, C. Audoin, A. Makdissi, P. Laurent, G. J. Dick, A. Clairon: Frequency stability degradation of an oscillator slaved to a periodically interrogated atomic resonator. IEEE Trans. Ultrason. Ferroelec. Freq. Control 45, 887–894 (1998)CrossRefGoogle Scholar
  32. 32.
    G. Santarelli, P. Laurent, P. Lemonde, A. Clairon, A. Mann, S. Chang, A. N. Luiten, C. Salomon: Quantum projection noise in an atomic fountain: a high stability cesium frequency standard. Phys. Rev. Lett. 82, 4619–4622 (1999)CrossRefADSGoogle Scholar
  33. 33.
    W. Itano, L. Lewis, D. J. Wineland: Shift of 2S1/2 hyperfine splittings due to blackbody radiation. Phys. Rev. A 25, 1233–1235 (1982)CrossRefADSGoogle Scholar
  34. 34.
    A. Bauch, R. Schröder: Experimental verification of the shift of the cesium hyperfine transition frequency due to blackbody radiation. Phys. Rev. Lett. 78, 622–625 (1997)CrossRefADSGoogle Scholar
  35. 35.
    A. Clairon, P. Laurent, A. Nadir, M. Drewsen, D. Grison, B. Lounis, C. Salomon: A simple and compact source of cold-atoms for cesium fountains and microgravity clocks. In: Proc. 6 th European Frequency and Time Forum, Vol. ESA SP-340 (ESA, Noordwijk 1992)pp. 27–33ADSGoogle Scholar
  36. 36.
    B. Lounis, J. Reichel, C. Salomon: Laser cooling of atoms in micro-gravity. Compte Rendue Acad. Sci. Paris 316(Série II), 739–744 (1993)Google Scholar
  37. 37.
    C. Salomon, C. Veillet: ACES: Atomic clock ensemble in space. In: ESA Space Station Utilisation Symposium, Vol. SP-385 (ESA, Darmstadt 1996) pp. 295–297Google Scholar
  38. 38.
    P. Laurent, P. Lemonde, E. Simon, G. Santarelli, A. Clairon, N. Dimarcq, P. Petit, C. Audoin, C. Salomon: A cold-atom clock in absence of gravity. Eur. Phys. J. D 3, 201–204 (1998)ADSGoogle Scholar
  39. 39.
    K. Gibble: Laser-cooled microgravity clocks. IEEE Int. Freq. Control Symp. Proc. 52, 41–45 (1998)Google Scholar
  40. 40.
    H. Robinson, S. Jefferts, D. Sullivan, L. Hollberg, N. Ashby, T. Heavner, J. Shirley, F. Walls, R. Drullinger: Design studies for a laser-cooled space clock. IEEE Int. Freq. Control Symp. Proc. 52, 37–40 (1998)Google Scholar
  41. 41.
    A. Makdissi, J. Berthet, E. de Clercq: Phase shift and light shift determination in an optically pumped cesium beam frequency standard. IEEE Trans. Ultrason. Ferroelec. Freq. Control (1999) submittedGoogle Scholar
  42. 42.
    S. Bize, Y. Sortais, M. Santos, Mandache, A. Clairon, C. Salomon: High-accuracy measurement of the 87Rb ground-state hyperfine splitting in an atomic fountain. Europhys. Lett. 45, 558–564 (1999)CrossRefADSGoogle Scholar
  43. 43.
    A. Kastberg, W. Phillips, S. Rolston, R. Spreeuw, P. Jessen: Adiabatic cooling of cesium to 700 nk in an optical lattice. Phys. Rev. Lett. 74, 1542–1545 (1995)CrossRefADSGoogle Scholar
  44. 44.
    A. N. Luiten, A. Mann, M. Costa, D. Blair: Power stabilized cryogenic sapphire oscillator. IEEE Trans. Instrum. Meas. 44, 132–135 (1995)CrossRefGoogle Scholar
  45. 45.
    D. J. Wineland, W. Itano, J. Bergquist, F. Walls: Proposed stored 201Hg+ ion frequency standards. 35th Annu. Freq. Control Symp. Proc., 502–511 (1981)Google Scholar
  46. 46.
    W. Itano, J. Bergquist, J. Bollinger, J. Gilligan, D. Heinzen, F. More, M. Raizen, D. J. Wineland: Quantum projection noise: population fluctuations in two-level systems. Phys. Rev. A 47, 3554–3570 (1993)CrossRefADSGoogle Scholar
  47. 47.
    R. Tjoelker, J. Prestage, L. Maleki: Record frequency stability with mercury in a linear ion trap. In: Proc. Fifth Symposium on Frequency Standards and Metrology, J. Bergquist (Ed.) (World Scientific, Singapore 1996)pp. 33–38Google Scholar
  48. 48.
    P. Fisk, M. Sellars, M. Lawn, C. Coles: A microwave frequency standard based on trapped, buffer gas-cooled 171Yb+ ions. In: Proc. Fifth Symposium on Frequency Standards and Metrology, J. Bergquist (Ed.) (World Scientific, Singapore 1996)pp. 27–32Google Scholar
  49. 49.
    S. Ghezali, P. Laurent, S. Lea, A. Clairon: An experimental study of the spin-exchange frequency shift in a laser cooled cesium fountain frequency standard. Europhys. Lett. 36, 25–30 (1996)CrossRefADSGoogle Scholar
  50. 50.
    D. Berkeland, J. Miller, J. Bergquist, W. Itano, D. Wineland: Laser-cooled mercury ion frequency standard. Phys. Rev. Lett. 80, 2089–2092 (1998)CrossRefADSGoogle Scholar
  51. 51.
    S. Kokkelmans, B. Verhaar, K. Gibble, D. Heinzen: Predictions for laser-cooled Rb clocks. Phys. Rev. A 56, R4389–R4392 (1997)CrossRefADSGoogle Scholar
  52. 52.
    J. Prestage, R. Tjoelker, L. Maleki: Atomic clocks and variations of the fine structure constant. Phys. Rev. Lett. 74, 3511–3514 (1995)CrossRefADSGoogle Scholar
  53. 53.
    E. Arimondo, M. Inguscio, P. Violino: Experimental determinations of the hyperfine structure in the alkali atoms. Rev. Mod. Phys. 49, 31–76 (1977)CrossRefADSGoogle Scholar
  54. 54.
    R. F. C. Vessot, M. W. Levin, F. E. M. Mattison, E. L. Blomberg, T. E. Hoffman, G. U. Nystrom, B. F. Farrell, R. Decher, P. B. Eby, R. Baugher, J. W. Watts, D. L. Teuber, F. D. Wills: Test of relativistic gravitation with a space-borne hydrogen maser. Phys. Rev. Lett. 45, 2081–2084 (1980)CrossRefADSGoogle Scholar
  55. 55.
    D. Wineland, J. Bollinger, W. Itano, F. More: Spin squeezing and reduced quantum noise in spectroscopy. Phys. Rev. A 46, R6797–R6800 (1992)CrossRefADSGoogle Scholar
  56. 56.
    A. Kuzmich, K. Molmer, E. Polzik: Spin squeezing in an ensemble of atoms illuminated with squeezed light. Phys. Rev. Lett. 79, 4782–4785 (1997)CrossRefADSGoogle Scholar
  57. 57.
    J. Sorensen, J. Hald, E. Polzik: Quantum noise of an atomic spin polarization measurement. Phys. Rev. Lett. 80, 3487–3490 (1998)CrossRefADSGoogle Scholar
  58. 58.
    T. Udem, A. Huber, B. Gross, J. Reichert, M. Prevedelli, M. Weitz, T. W. Hänsch: Phase-coherent measurement of the hydrogen 1S-2S transition frequency with an optical frequency interval divider chain. Phys. Rev. Lett. 79, 2646–2649 (1997)CrossRefADSGoogle Scholar
  59. 59.
    F. Riehle, H. Schnatz, B. Lipphardt, G. Zinner, T. Trebst, J. Helmcke: The optical calcium frequency standard. IEEE Trans. Instrum. Meas. 48, 613–617 (1999)CrossRefGoogle Scholar
  60. 60.
    F. Ruschewitz, J. Peng, H. Hinderthür, N. Schaffrath, K. Sengstock, W. Ertmer: Sub-kilohertz optical spectroscopy with a time domain atom interferometer. Phys. Rev. Lett. 80, 3173–3176 (1998)CrossRefADSGoogle Scholar
  61. 61.
    K. Vogel, T. Dinneen, A. Gallagher, J. Hall: Narrow-line doppler cooling of strontium to the recoil limit. IEEE Trans. Instrum. Meas. 48, 618–621 (1999)CrossRefGoogle Scholar
  62. 62.
    H. Katori, T. Ido, Y. Isoya, M. Kuwata-Gonokami: Magneto-optical trapping and cooling of strontium atoms down to the photon recoil temperature. Phys. Rev. Lett. 82, 1116–1119 (1999)CrossRefADSGoogle Scholar
  63. 63.
    B. Young, F. Cruz, W. Itano, J. C. Bergquist: Visible lasers with subhertz linewidths. Phys. Rev. Lett. 82, 3799–3802 (1999)CrossRefADSGoogle Scholar
  64. 64.
    G. Petit, Thomas, Z. Jiang, P. Uhrich, F. Taris: Use of GPS ASHTECH Z12T recievers for accurate time and frequency comparisons. IEEE Trans. Ultrason. Ferroelec. Freq. Control 46, 941–949 (1999)CrossRefGoogle Scholar
  65. 65.
    K. Larson, J. Levine: Time transfer using the phase of the GPS carrier. IEEE Int. Freq. Control Symp. Proc.52, 292–297 (1998)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2001

Authors and Affiliations

  • Pierre Lemonde
    • 1
  • Philippe Laurent
    • 1
  • Giorgio Santarelli
    • 1
  • Michel Abgrall
    • 1
  • Yvan Sortais
    • 1
  • Sébastien Bize
    • 1
  • Christophe Nicolas
    • 1
  • Shougang Zhang
    • 1
  • André Clairon
    • 1
  • Noël Dimarcq
    • 2
  • Pierre Petit
    • 2
  • Antony G. Mann
    • 3
  • Andre N. Luiten
    • 3
  • Sheng Chang
    • 3
  • Christophe Salomon
    • 4
  1. 1.Observatoire de ParisBNM-LPTFParisFrance
  2. 2.Laboratoire de l’horloge atomiqueOrsayFrance
  3. 3.Physics DepartmentUniversity of Western AustraliaNedlandsAustralia
  4. 4.Département de Physique de l’Ecole Normale SupérieureLaboratoire Kastler BrosselParisFrance

Personalised recommendations