Advertisement

Single-Ion Optical Frequency Standards and Measurement of their Absolute Optical Frequency

  • Alan A. Madej
  • John E. Bernard
Chapter
Part of the Topics in Applied Physics book series (TAP, volume 79)

Abstract

This work examines the current status of research on optical frequency standards based upon single trapped ions. Methods for the containment and laser cooling of such single-ion samples are briefly discussed. Detection of ultra-narrow reference transitions via the observation of quantum jumps is outlined, together with the progress in the development of laser sources to provide cooling, detection and probing for such standards. A brief discussion on methods employed to date on stabilization to single-ion transition resonances is given, together with a summary of some of the principal sources for systematic shifts in such systems. Progress in the investigation of Ba+, Sr+, Ca+, Hg+, Yb+, and In+ single-ion reference transitions is given. The work concludes with an overview of the progress in the measurement of single-ion referenced optical frequency relative to the Cs realization of the SI second and other reference standards.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    H. G. Dehmelt: Proposed 10 14 δν/ν laser fluorescence spectroscopy on Tl+ mono-ion oscillator. Bull. Am. Phys. Soc. 18, 1521 (1973)Google Scholar
  2. 2.
    P. T. Fisk: Trapped-ion and trapped-atom microwave frequency standards. Rep. Prog. Phys. 60, 761–817 (1997)ADSCrossRefGoogle Scholar
  3. 3.
    R. Blatt, P. Gill, R. C. Thompson: Current perspectives on the physics of trapped ions. J. Mod. Opt. 39, 193–220 (1992)ADSCrossRefGoogle Scholar
  4. 4.
    R. Blatt: Spectroscopy and quantum optics with stored ions. In Atomic Physics, D. J. Wineland, C. E. Wieman, S. J. Smith (Eds.), Vol. 14 (AIP Press, New York 1995)pp. 219–239Google Scholar
  5. 5.
    H. G. Dehmelt: Mono-ion oscillator as potential ultimate laser frequency standard. IEEE Trans. Instrum. Meas. 31, 83–87 (1982)ADSGoogle Scholar
  6. 6.
    Comité international des poids et mesures (CIPM), Proces-verbaux de la 86e session. BIPM tome 65 (BIPM Press, Sevres, France 1998)pp. 246–252Google Scholar
  7. 7.
    D. J. Wineland: Frequency standards based on stored ions. Proc. IEEE 74, 147–150(1986)ADSCrossRefGoogle Scholar
  8. 8.
    W. M. Itano: Atomic ion frequency standards. Proc. IEEE 79, 936–941 (1991)ADSCrossRefGoogle Scholar
  9. 9.
    D. J. Wineland, W. M. Itano, R. S. Van Dyck, Jr.: High resolution spectroscopy of stored ions. Adv. Atom. Molec. Phys. 19, 135–186 (1983)CrossRefGoogle Scholar
  10. 10.
    F. Diedrich, H. Walther: Nonclassical radiation of a single stored ion. Phys. Rev. Lett. 58, 203–206 (1987)ADSCrossRefGoogle Scholar
  11. 11.
    J. T. Höffges, H. W. Baldauf, T. Eichler, S. R. Helmfrid, H. Walther: Heterodyne measurement of the fluorescent radiation of a single trapped ion. Opt. Commun. 133, 170–174 (1997)ADSCrossRefGoogle Scholar
  12. 12.
    C. Monroe, D. M. Meekhof, B. E. King, W. M. Itano, D. J. Wineland: Demonstration of a fundamental quantum logic gate. Phys. Rev. Lett. 75, 4714–4717 (1995)zbMATHADSCrossRefMathSciNetGoogle Scholar
  13. 13.
    M. Schubert, I. Siemers, R. Blatt, W. Neuhauser, P. E. Toschek: Photon antibunching and non-Poissionian fluorescence of a single three-level ion. Phys. Rev. Lett. 68, 3016–3019 (1992)ADSCrossRefGoogle Scholar
  14. 14.
    B. Appasamy, Y. Stalgies, P. E. Toschek: Measurement-induced vibrational dynamics of a trapped ion. Phys. Rev. Lett. 80, 2805–2808 (1998)ADSCrossRefGoogle Scholar
  15. 15.
    H. G. Dehmelt: Radiofrequency spectroscopy of stored ions I: Storage. Adv. Atom. Molec. Phys. 3, 53–72 (1967)CrossRefGoogle Scholar
  16. 16.
    R. G. Hulet, D. J. Wineland, J. C. Bergquist, W. M. Itano: Precise test of quantum jump theory. Phys. Rev. Lett. 37, 4544–4547 (1988)ADSGoogle Scholar
  17. 17.
    D. J. Bate, K. Dholakia, R. C. Thompson, D. C. Wilson: Ion oscillation frequencies in a combined trap. J. Mod. Opt. 39, 305–316 (1992)ADSCrossRefGoogle Scholar
  18. 18.
    W. Neuhauser, M. Hohenstatt, P. E. Toschek, H. Dehmelt: Optical-sideband cooling of a visible atom cloud confined in a parabolic well. Phys. Rev. Lett. 41, 233–236 (1978)ADSCrossRefGoogle Scholar
  19. 19.
    E. C. Beaty: Simple electrodes for quadrupole ion traps. J. Appl. Phys. 61, 2118–2122 (1987)ADSCrossRefGoogle Scholar
  20. 20.
    R. G. Brewer, R. G. DeVoe, R. Kallenbach: Planar ion microtraps. Phys. Rev. A 46, R6781–R6784 (1992)ADSCrossRefGoogle Scholar
  21. 21.
    R. G. DeVoe: Elliptical ion traps and trap arrays for quantum computation. Phys. Rev. A 58, 910–914 (1998)ADSCrossRefGoogle Scholar
  22. 22.
    N. Yu, W. Nagourney: Analysis of a Paul-Straubel trap and its variations. J. Appl. Phys. 77, 3623–3630 (1995)ADSCrossRefGoogle Scholar
  23. 23.
    C. A. Schrama, E. Peik, W. W. Smith, H. Walther: Novel miniature ion traps. Opt. Commun. 101, 32–36 (1993)ADSCrossRefGoogle Scholar
  24. 24.
    S. R. Jefferts, C. Monroe, E. W. Bell, D. J. Wineland: Coaxial-resonator-driven rf (Paul) trap for strong confinement. Phys. Rev. A 51, 3112–3116 (1995)ADSCrossRefGoogle Scholar
  25. 25.
    J. D. Prestage, G. J. Dick, L. Maleki: New ion trap for frequency standard applications. J. Appl. Phys. 66, 1013–1017 (1989)ADSCrossRefGoogle Scholar
  26. 26.
    I. Waki, S. Kassner, G. Birkl, H. Walther: Observation of ordered structures of laser-cooled ions in a quadrupole storage ring. Phys. Rev. Lett. 68, 2007–2010(1992)ADSCrossRefGoogle Scholar
  27. 27.
    H. C. Nägerl, W. Bechter, J. Eschner, F. Schmidt-Kaler, R. Blatt: Ion strings for quantum gates. Appl. Phys. B 66, 603–608 (1998)ADSCrossRefGoogle Scholar
  28. 28.
    I. Siemers, M. Schubert, R. Blatt, W. Neuhauser, P. E. Toschek: The ≪Trapped State≫ of a trapped ion, line shifts and shape. Europhys. Lett. 18, 139–144 (1992)ADSCrossRefGoogle Scholar
  29. 29.
    A. A. Madej, K. J. Siemsen, J. D. Sankey, R. F. Clark, J. Vanier: High-resolution spectroscopy and frequency measurement of the midinfrared 5d 2D3/2-5d 2D5/2 transition of a single laser-cooled Barium ion. IEEE Trans. Instrum. Meas. 42, 234–241(1993)CrossRefGoogle Scholar
  30. 30.
    D. J. Berkeland, J. D. Miller, J. C. Bergquist, W. M. Itano, D. J. Wineland: Minimization of ion micromotion in a Paul Trap. J. Appl. Phys. 83, 5025–5033 (1998)ADSCrossRefGoogle Scholar
  31. 31.
    J. D. Sankey, A. A. Madej: The production of ions for single-ion traps. Appl. Phys. B 49, 69–72 (1989)ADSCrossRefGoogle Scholar
  32. 32.
    T. W. Hänsch, A. L. Schawlow: Cooling of gases by laser radiation. Opt. Commun. 13, 68–69 (1975)ADSCrossRefGoogle Scholar
  33. 33.
    D. J. Wineland, H. G. Dehmelt: Proposed 10 14 δν < ν laser fluorescence spectroscopy on Tl + mono-ion oscillator III. Bull. Am. Phys. Soc. 20, 637 (1975)Google Scholar
  34. 34.
    D. J. Wineland, W. M. Itano: Laser cooling of atoms. Phys. Rev. A 20, 1521–1540 (1979)ADSCrossRefGoogle Scholar
  35. 35.
    D. J. Wineland, W. M. Itano: Laser-cooling limits and single-ion spectroscopy. Phys. Rev. A 36, 2220–2232 (1987)ADSCrossRefGoogle Scholar
  36. 36.
    E. Peik, G. Holleman, H. Walther: Laser cooling and quantum jumps of a single indium ion. Phys. Rev. A 49, 402–408 (1994)ADSCrossRefGoogle Scholar
  37. 37.
    F. Diedrich, J. C. Bergquist, W. M. Itano, D. J. Wineland: Laser cooling to the zero-point energy of motion. Phys. Rev. Lett. 62, 403–406 (1989)ADSCrossRefGoogle Scholar
  38. 38.
    D. J. Wineland, J. Dalibard, C. Cohen-Tannoudji: Sisyphus cooling of a bound atom. J. Opt. Soc. B 9, 32–42 (1992)ADSCrossRefGoogle Scholar
  39. 39.
    C. Monroe, D. M. Meekhof, B. E. King, S. R. Jefferts, W. M. Itano, D.J Wineland, P. Gould: Resolved-sideband Raman cooling of a bound atom to the 3D zero-point energy. Phys. Rev. Lett. 75, 4011–4014 (1995)ADSCrossRefGoogle Scholar
  40. 40.
    B. Appasamy, I. Siemers, Y. Stalgies, J. Eschner, R. Blatt, W. Neuhauser, P. E. Toschek: Quantized infrared-optical triple resonance on a single cold Barium ion. Appl. Phys. B 60, 473–477 (1995)ADSCrossRefGoogle Scholar
  41. 41.
    I. Marzoli, J. I. Cirac, R. Blatt, P. Zoller: Laser cooling of trapped three-level ions: Designing two-level systems for sideband cooling. Phys. Rev. A 49, 2771–2779 (1994)ADSCrossRefGoogle Scholar
  42. 42.
    H. G. Dehmelt: Proposed 1014δν < ν laser fluorescence spectroscopy on Tl+ mono-ion oscillator II. Bull. Amer. Phys. Soc. 20, 60 (1975)Google Scholar
  43. 43.
    W. Nagourney, E. Burt, H. G. Dehmelt: Optical frequency standard using individual Indium ions. In: Proc. Fifth Symposium on Frequency Standards and Metrology, J. C. Bergquist (Ed.) (World Scientific, Singapore 1996)pp. 341–346Google Scholar
  44. 44.
    W. Nagourney, J. Sandberg, H. G. Dehmelt: Shelved electron amplifier: Observation of quantum jumps. Phys. Rev. Lett. 56, 2797–2799 (1986)ADSCrossRefGoogle Scholar
  45. 45.
    Th. Sauter, W. Neuhauser, R. Blatt, P. E. Toschek: Observation of quantum jumps. Phys. Rev. Lett. 57, 1696–1698 (1986)ADSCrossRefGoogle Scholar
  46. 46.
    J. C. Bergquist, R. G. Hulet, W. M. Itano, D. J. Wineland: Observation of quantum jumps in a single atom. Phys. Rev. Lett. 57, 1699–1702 (1986)ADSCrossRefGoogle Scholar
  47. 47.
    L. Marmet, A. A. Madej, K. J. Siemsen, J. E. Bernard, B. G. Whitford: Precision frequency measurement of the 2 S 1/2-2 D 5/2 transition of Sr+ with a diode laser Locked to an ultrastable cavity. IEEE Trans. Instrum. Meas. 46, 169–173 (1997)CrossRefGoogle Scholar
  48. 48.
    M. Roberts, P. Taylor, G. P. Barwood, P. Gill, H. A. Klein, W. R. C. Rowley: Observation of an electric octopole transition in a single-ion. Phys. Rev. Lett. 78, 1876–1879 (1997)ADSCrossRefGoogle Scholar
  49. 49.
    P. Taylor, M. Roberts, G. P. Barwood, P. Gill: Combined optical-infrared single-ion frequency standard. Opt. Lett. 23, 298–300 (1998)ADSCrossRefGoogle Scholar
  50. 50.
    C. E. Wieman, L. Hollberg: Using diode lasers for atomic physics. Rev. Sci. Instrum. 62, 1–20 (1991)ADSCrossRefGoogle Scholar
  51. 51.
    M. Ohtsu: Highly Coherent Semiconductor Lasers (Artech House, Boston 1992) and references thereinGoogle Scholar
  52. 52.
    G. P. Barwood, C. S. Edwards, P. Gill, H. A. Klein, W. R. C. Rowley: Observation of the 5s 2 S 1/2-4d 2 D 5/2 transition in a single laser-cooled trapped Sr+ ion using an all-solid-state system of lasers. Opt. Lett 18, 732–734 (1993)ADSCrossRefGoogle Scholar
  53. 53.
    Chr. Tamm: A Tunable light source in the 370 nm range based on an optically stabilized, frequency-doubled semiconductor laser. Appl. Phys. B 56, 295–300 (1993)ADSCrossRefGoogle Scholar
  54. 54.
    A. A. Madej, L. Marmet, J. E. Bernard: Rb atomic absorption line reference for single Sr+ laser cooling systems. Appl. Phys. B 67, 229–234 (1998)ADSCrossRefGoogle Scholar
  55. 55.
    C. Raab, J. Bolle, H. Oberst, J. Eschner, F. Schmidt-Kaler, R. Blatt: Diode laser spectrometer at 493 nm for single trapped Ba+ ions. Appl. Phys. B 67, 683–688 (1998)ADSCrossRefGoogle Scholar
  56. 56.
    G. Ritter, S.-M. Bae, U. Eichmann: All-diode-laser cooling of single Ca+ ions. Appl. Phys. B 66, 609–612 (1998)ADSCrossRefGoogle Scholar
  57. 57.
    A. A. Madej, W. E. Berger, G. R. Hanes, M. S. O’Sullivan: Tunable, Frequency narrowed Nd3+-doped fiber laser for excitation of the 5p 2 P 1/2-4d 2 D 3/2 transition in Sr+. Opt. Commun. 73, 147–152 (1989)ADSCrossRefGoogle Scholar
  58. 58.
    Chr. Tamm, D. Schnier: A tunable three-level Neodymium-doped fiber laser and its application to depletion of the 4f 14 5d 2 D 3/2 level in optically excited, trapped Ytterbium ions. Opt. Commun. 87, 240–244 (1992)ADSCrossRefGoogle Scholar
  59. 59.
    G. Hollemann, E. Peik, H. Walther: Frequency-stabilized diode-pumped Nd:YAG laser at 946 nm with harmonics at 473 and 237 nm. Opt. Lett. 19, 192–194 (1994)ADSCrossRefGoogle Scholar
  60. 60.
    J. Bergquist, W. M. Itano, F. Elsner, M. Raizen, D. J. Wineland: Single ion optical spectroscopy. In: Light Induced Effects on Atoms, Ions, and Molecules, L. Moi, S. Gozzini, E. Arimondo, F. Strumia (Eds.) (ETS Editrice, Pisa, 291–299 1991)Google Scholar
  61. 61.
    W. Neuhauser, M. Hohenstatt, P. E. Toschek, H. G. Dehmelt: Localized visible Ba+ mono-ion oscillator. Phys. Rev. A 22, 1137–1140 (1980)ADSCrossRefGoogle Scholar
  62. 62.
    Janik G., Nagourney W., and Dehmelt H. (1985) Doppler-free optical spectroscopy on the Ba+ mono-ion oscillator. J. Opt. Soc. Am B 2, 1251–1257ADSCrossRefGoogle Scholar
  63. 63.
    W. Nagourney, N. Yu, H. G. Dehmelt: High resolution Ba+ monoion spectroscopy with frequency stabilized color-center laser. Opt. Commun. 79, 176–180 (1990)ADSCrossRefGoogle Scholar
  64. 64.
    N. Yu, W. Nagourney, H. G. Dehmelt: Radiative lifetime measurement of the Ba+ metastable D3/2 state. Phys. Rev. Lett. 78, 4898–4901 (1997)ADSCrossRefGoogle Scholar
  65. 65.
    A. A. Madej, J. D. Sankey: Single, trapped Sr+ atom: laser cooling and quantum jumps by means of the 4d 2 D 5/2-5s 2 S 1/2 transition. Opt. Lett. 15, 634–636 (1990)ADSCrossRefGoogle Scholar
  66. 66.
    M. Musha, A. Zvyagin, K. Nakagawa, M. Ohtsu: Development of all-semiconductor laser sources for studies of 88Sr+ ions confined in RF trap. Jpn. J. Appl. Phys. 33, 1603–1607 (1994)ADSCrossRefGoogle Scholar
  67. 67.
    S. Urabe, K. Hayasaka, M. Watanabe, H. Imajo, R. Ohmukai, R. Hayashi: Laser cooling of a single Ca+ ion: Observation of quantum jumps. Appl. Phys. 57, 367–371 (1993)Google Scholar
  68. 68.
    S. Urabe, M. Watanabe, H. Imajo, K. Hayasaka, U. Tanaka, R. Ohmukai: Observation of Doppler sidebands of a laser-cooled Ca+ ion by using a low-temperature-operated laser diode. Appl. Phys. B 67, 223–227 (1998)ADSCrossRefGoogle Scholar
  69. 69.
    T. Kaing, M. Houssin: Ring cavity enhanced second harmonic generation of a diode laser using LBO crystal. Opt. Commun. 157, 155–160 (1998)ADSCrossRefGoogle Scholar
  70. 70.
    H. Hemmati, J. Bergquist, W. M. Itano: Generation of continuous-wave 194-nm radiation by sum-frequency mixing in an external ring cavity. Opt. Lett. 8, 73–75 (1983)ADSCrossRefGoogle Scholar
  71. 71.
    B.C. Young, D. J. Berkeland, F. Cruz, J. Bergquist, W. M. Itano, D. J. Wineland: Lasers for a trapped Hg+ optical frequency standard. In: Conf. on Precision Electromagnetic Measurements Conf. Dig. No. 98CH36254, T. L. Nelson (Ed.) (IEEE Press, Piscataway, NJ 1998)pp. 153–154CrossRefGoogle Scholar
  72. 72.
    P. Taylor, M. Roberts, S. V. Gateva-Kostova, R. B. M. Clarke, G. P. Barwood, W. R. C. Rowley, P. Gill: Investigation of the 2 S 1/2-2 D 5/2 clock transition in a single ytterbiumion. Phys. Rev. A 56, 2699–2704 (1997)ADSCrossRefGoogle Scholar
  73. 73.
    H. Lehmitz, J. Hattendorf-Ledwoch, R. Blatt, H. Harde: Population Trapping in Excited Yb Ions. Phys. Rev. Lett. 62, 2108–2111 (1989)ADSCrossRefGoogle Scholar
  74. 74.
    H. A. Klein, A. S. Bell, G. P. Barwood, P.Gill: Laser cooling of trapped Yb+. Appl. Phys. B 50, 13–17 (1990)ADSCrossRefGoogle Scholar
  75. 75.
    A. S. Bell, P. Gill, H. A. Klein, A. P. Levick, Chr. Tamm, D. Schnier: Laser cooling of trapped Ytterbium ions using a four-level optical-excitation scheme. Phys. Rev. A 44, R20–R23 (1991)ADSCrossRefGoogle Scholar
  76. 76.
    B. G. Whitford, K. J. Siemsen, A. A. Madej, J. D. Sankey: Absolute-frequency measurement of the narrow-linewidth 24 THz D-D transition of a single laser-cooled Barium ion. Opt. Lett. 19, 356–358 (1994)ADSCrossRefGoogle Scholar
  77. 77.
    K. J. Siemsen, A. A. Madej, B. G. Whitford: Frequency stabilized ammonia laser system for probing the 24 THz clock transition of a trapped Barium ion. IEEE J. Quantum Electron. 31, 1764–1773 (1995)CrossRefADSGoogle Scholar
  78. 78.
    R. W. P. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, H. Ward: Laser phase and frequency stabilization using an optical resonator. Appl. Phys. B 31, 97–105 (1983)ADSCrossRefGoogle Scholar
  79. 79.
    J. Hough, D. Hils, M. D. Rayman, L.-S. Ma, L. Hollberg, J. L. Hall: Dye-laser frequency stabilization using optical resonators. Appl. Phys. B 33, 179–185 (1984)ADSCrossRefGoogle Scholar
  80. 80.
    Ch. Salomon, D. Hils, J. L. Hall: Laser stabilization at the millihertz level. J. Opt. Soc. Am. B 5, 1576–1587 (1988)ADSCrossRefGoogle Scholar
  81. 81.
    D. Hils, J. L. Hall: Ultra-stable cavity-stabilized lasers with subhertz linewidth. In: Frequency Standards and Metrology, A. DeMarchi (Ed.) (Springer, Heidelberg,Berlin 1989)pp. 162–173Google Scholar
  82. 82.
    J. C. Bergquist, W. M. Itano, D. J. Wineland: Laser stabilization to a single-ion. In: Frontiers in Laser Spectroscopy, T.W. Hänsch, M. Inguscio (Eds.) (North Holland, Amsterdam, 359–376 1994)Google Scholar
  83. 83.
    C-H. Shin, M. Ohtsu: Stable semiconductor laser with a 7-Hz linewidth by an optical-electrical double-feedback technique. Opt. Lett. 15, 1455–1457 (1990)ADSCrossRefGoogle Scholar
  84. 84.
    I. Steiner, V. Enders, F. Elsner, W. Neuhauser, P. E. Toschek, R. Blatt, J. Helmcke: A dye ring-laser spectrometer for precision spectroscopy. Appl. Phys. B 49, 251–256 (1989)ADSCrossRefGoogle Scholar
  85. 85.
    J. E. Bernard, L. Marmet, A. A. Madej: A laser frequency lock referenced to a single trapped ion. Opt. Commun. 150, 170–174 (1998)ADSCrossRefGoogle Scholar
  86. 86.
    N. Yu, X. Zhao, H. G. Dehmelt, W. Nagourney: Stark shift of a single Barium ion and potential application to zero-point confinement in a rf trap. Phys. Rev A 50, 2738–2741 (1994)ADSCrossRefGoogle Scholar
  87. 87.
    Chr. Tamm, D. Engelke: High-resolution optical spectroscopy on a single 171 Yb ion in a Paul trap. In: Laser Spectroscopy XIII Int. Conf. Proc. Z.-J. Wang, Z.-M. Zhang, Y.-Z. Wang (Eds.) (World Scientific, Singapore 1998)pp. 180–182Google Scholar
  88. 88.
    R. B. M. Clarke, E. Riis, G. P. Barwood, P. Gill, G. Huang, H. A. Klein: A sideband-injection locked extended cavity diode laser for interrogating cold trapped Strontium ions. Opt. Commun. 158, 36–40 (1998)ADSCrossRefGoogle Scholar
  89. 89.
    B. C. Young, F. C. Cruz, W. M. Itano, J. C. Bergquist: Visible lasers with subhertz linewidths. Phys. Rev. Lett. 82, 3799–3802 (1999)ADSCrossRefGoogle Scholar
  90. 90.
    R. B. M. Clarke: Ultra-High Resolution Spectroscopy of Laser-Cooled Atoms and Ions. Ph. D. Thesis, University of Strathclyde, U. K. (1998)Google Scholar
  91. 91.
    R. H. Dicke: The effect of collisions upon the Doppler width of spectral lines. Phys. Rev. 89, 472–473 (1953)ADSCrossRefGoogle Scholar
  92. 92.
    A. Khadjavi, A. Lurio, W. Happer: Stark effect in the exicted states of Rb, Cs, Cd, and Hg. Phys.Rev. 167, 128–135 (1968)ADSCrossRefGoogle Scholar
  93. 93.
    J. W. Farley, W. H. Wing: Accurate calculation of dynamic Stark shifts and depopulation rates of Rydberg energy levels induced by blackbody radiation. Hydrogen, helium, and alkali-metal atoms. Phys. Rev. A 23, 2397–2424 (1981)ADSCrossRefGoogle Scholar
  94. 94.
    W. M. Itano, L. L. Lewis, D. J. Wineland: Shift of 2S1/2 hyperfine splittings due to blackbody radiation. Phys. Rev. A 25, 1233–1235 (1982)ADSCrossRefGoogle Scholar
  95. 95.
    M. E. Poitzsch, J. C. Bergquist, W. M. Itano, D. J. Wineland: Cryogenic linear ion trap for accurate spectroscopy. Rev. Sci. Instrum. 67, 129–134 (1996)ADSCrossRefGoogle Scholar
  96. 96.
    I. I. Sobel’man: Introduction to the Theory of Atomic Spectra. (Pergamon, Oxford 1972)p. 271Google Scholar
  97. 97.
    J. E. Bernard, A. A. Madej, L. Marmet, B. G. Whitford, K. J. Siemsen, S. Cundy: Cs-based frequency measurement of a single, trapped ion transition in the visible region of the spectrum. Phys. Rev. Lett. 82, 3228–3231 (1999)ADSCrossRefGoogle Scholar
  98. 98.
    D. J. Wineland, W. M. Itano, J. C. Bergquist, J. J. Bollinger, F. Diedrich, S. L. Gilbert: High accuracy spectroscopy of stored ions. In: Frequency Standards and Metrology, De Marchi A. (Ed.) (Springer, Berlin, Heidelberg 1989)pp. 71–77Google Scholar
  99. 99.
    P. Gill: Private communication (1999)Google Scholar
  100. 100.
    A. A. Madej, J. D. Sankey: Quantum jumps and the single trapped Barium ion: Determination of collisional quenching rates for the 5d 2 D 5/2 level. Phys. Rev. A 41, 2621–2630 (1990)ADSCrossRefGoogle Scholar
  101. 101.
    A. A. Madej, J. D. Sankey: Observation of anomalous quantum jumps in a single-ion trap. Appl. Phys. B 50, 433–438 (1990)ADSCrossRefGoogle Scholar
  102. 102.
    B. P. Stoicheff, E. Weinberger: Frequency shifts, line broadenings, and phase-interference effects in Rb** + Rb Collisions, Measured by Doppler-free two-photon spectroscopy. Phys. Rev. Lett. 44, 733–736 (1980)ADSCrossRefGoogle Scholar
  103. 103.
    Chr. Tamm, D. Engelke: Optical frequency standard investigations on trapped, laser-cooled 171Yb ions. In: Proc. Fifth Symposium on Frequency Standards and Metrology, J. C. Bergquist (Ed.) (World Scientific, Singapore 1996)pp. 283–288Google Scholar
  104. 104.
    Y. Stalgies, I. Siemers, B. Appasamy, P. E. Toschek: Light shift and Fano resonances in a single cold ion. J. Opt. Soc. Am. B 15, 2505–2514 (1998)ADSCrossRefGoogle Scholar
  105. 105.
    X. Zhao, N. Yu, H. G. Dehmelt, W. Nagourney: Isotope-shift measurement of the 6 2 S 1/2-5 2 D 5/2 transition in Ba+. Phys. Rev. A 51, 4483–4486 (1995)ADSCrossRefGoogle Scholar
  106. 106.
    A. A. Madej, J. D. Sankey, G. R. Hanes, K. J. Siemsen, A. R. W. McKellar: Observation of a midinfrared fine-structure transition for the single trapped Barium ion. Phys. Rev. A 45, 1742–1745 (1992)ADSCrossRefGoogle Scholar
  107. 107.
    A. A. Madej, J. D. Sankey, A. R. W. McKellar: Quantum jump studies using the 5d 2 D 3/2-5d 2 D 5/2 transition in Ba+. J. Mod. Opt. 39, 373–379 (1992)ADSCrossRefGoogle Scholar
  108. 108.
    A. A. Madej, K. J. Siemsen, B. G. Whitford, J. E. Bernard, L. Marmet: Precision absolute frequency measurements with single atoms of Ba+ and Sr+. In: Proc. Fifth Symposium on Frequency Standards and Metrology, J. Bergquist (Ed.) (World Scientific, Singapore 1996)pp. 165–170Google Scholar
  109. 109.
    G. P. Barwood, C. S. Edwards, P. Gill, G. Huang, H. A. Klein, W. R, Rowley: Precision measurement of the 674 nm 2 S 1/2-2 D 5/2 transition in a single cold Sr+ ion. IEEE Trans. Instrum. Meas. 44, 117–119 (1995)CrossRefGoogle Scholar
  110. 110.
    G. P. Barwood, P. Gill, H. A. Klein, W. R, Rowley: Clearly resolved secular sidebands on the 2 S 1/2-2 D 5/2 674 nm clock transition in a single trapped Sr+ ion. IEEE Trans. Instrum. Meas. 46, 133–136 (1997)CrossRefGoogle Scholar
  111. 111.
    G. P. Barwood, P. Gill, G. Huang, H. A. Klein, W. R. Rowley: Sub-kHz clock transition linewidths in a cold trapped 88Sr+ ion in low magnetic fields using 1092-nm polarisation switching. Opt. Commun. 151, 50–54 (1998)ADSCrossRefGoogle Scholar
  112. 112.
    A. A. Madej, K. J. Siemsen: Absolute heterodyne frequency measurement of the 88Sr+ 445-THz S-D single-ion transition. Opt. Lett. 21, 824–826 (1996)ADSCrossRefGoogle Scholar
  113. 113.
    A. A. Madej, K. J. Siemsen, L. Marmet, J. E. Bernard, O. Acef: Linking the 474 THz HeNe/ I2 standard to the 445 THz Single Sr+ trapped ion standard: Heterodyne frequency measurements using an OsO4 stabilized 29 THz laser system. IEEE Trans. Instrum. Meas. 48, 553–557 (1999)CrossRefGoogle Scholar
  114. 114.
    B. G. Whitford, J. E. Bernard, A. A. Madej, K. J. Siemsen: A method for the absolute measurement of the 445 THz clock frequency of a single, cooled Sr ion and of the 474 THz HeNe/ I2 laser frequency. In: Proc. Fifth Symposium on Frequency Standards and Metrology, J. C. Bergquist (Ed.) (World Scientific, Singapore 1996)pp. 471–472Google Scholar
  115. 115.
    A. A. Madej, J. E. Bernard, B. G. Whitford, L. Marmet, K. J. Siemsen: The strontium single-ion frequency standard: Preliminary absolute frequency measurements using a phase-locked optical frequency chain. In: Conf. on Precision Electromagnetic Measurements, Conf. Dig. No. 98CH36254, T. L. Nelson (Ed.) (IEEE Press, Piscataway, NJ 1998)pp. 323–324CrossRefGoogle Scholar
  116. 116.
    G. P. Barwood, G. Huang, H. A. Klein, P. Gill, R. B. M. Clarke: Subkilohertz comparison of the single-ion optical-clock 2 S 1/2-2 D 5/2 transition linewidths in two 88Sr+ traps. Phys. Rev. A 59, R3178–R3181 (1999)ADSCrossRefGoogle Scholar
  117. 117.
    M. Knoop, M. Vedel, F. Vedel: Collisional quenching and j-mixing rate constants for the 3D levels of Ca+. Phys. Rev. A 58, 264–269 (1998)ADSCrossRefGoogle Scholar
  118. 118.
    F. Arbes, T. Gudjons, F. Kurth, G. Werth, F. Marin, M. Inguscio: Lifetime measurements of the 3D 3/2 and 3D 5/2 metastable states in CaII. Z. Phys. D 25, 295–298 (1993)CrossRefADSGoogle Scholar
  119. 119.
    J. C. Bergquist, W. M. Itano, D. J. Wineland: Recoiless optical absorption and Doppler sidebands of a single trapped ion. Phys. Rev A 36, 428–430 (1987)ADSCrossRefGoogle Scholar
  120. 120.
    J. C. Bergquist, D. J. Wineland, W. M. Itano, H. Hemmati, H.-U. Daniel, G. Leuchs: Energy and radiative lifetime of the 5d 9 6s 22 D 5/2 state in Hg II by Doppler-free two-photon laser spectroscopy. Phys. Rev. Lett. 55, 1567–1570 (1985)ADSCrossRefGoogle Scholar
  121. 121.
    D. J. Wineland, J. C. Bergquist, J. J. Bollinger, W. M. Itano, D. J. Heinzen, S. L. Gilbert, C. H. Manney, M. G. Raizen: Progress at NIST Toward Absolute Frequency Standards Using Stored Ions. IEEE Trans. Ultrason. Ferroelec. Freq. Control 37, 515–523 (1990)CrossRefGoogle Scholar
  122. 122.
    A. S. Bell, P. Gill, H. A. Klein, A. P. Levick, W. R. C. Rowley: Precision measurement of the 2 F 7/2-2 D 5/2 3.43 µm interval in trapped 172Yb+. J. Mod. Opt. 39, 381–387 (1992)ADSCrossRefGoogle Scholar
  123. 123.
    S. N. Lea, G. M. Macfarlane, G. Huang, P. Gill: Progress towards an optical frequency chain at NPL. In: Conf. on Precision Electromagnetic Measurements, Conf. Dig. No. 98CH36254, T. L. Nelson (Ed.) (IEEE Press, Piscataway,NJ 1998)pp. 467–468CrossRefGoogle Scholar
  124. 124.
    D. Engelke, Chr. Tamm: Dark times in the resonance fluorescence of trapped 171 Yb ions caused by spontaneous quantum jumps to the 2 D 3/2 (F = 2) state. Europhys. Lett. 33, 347–350 (1996)ADSCrossRefGoogle Scholar
  125. 125.
    Chr. Tamm, V. Bühner: Ultrahigh-resolution optical spectroscopy on a trapped 171Yb+ ion. In: Europ. Quantum Electronics Conference EQEC 98, IEEE Catalog No. 89TH8326 (1998)p. 258, Abstract QFD5Google Scholar
  126. 126.
    E. Peik, G. Hollemann, J. Abel, J. von Zanthier, H. Walther: Single-ion spectroscopy of Indium: Towards a group-III monoion oscillator. In: Proc. Fifth Symposium on Frequency Standards and Metrology, J. C. Bergquist (Ed.) (World Scientific, Singapore 1996)pp. 376–379Google Scholar
  127. 127.
    H. G. Dehmelt, N. Yu, W. Nagourney: The 6 1 S o-6 3 P 0 transition in Thallium isotope ion 204Tl+: A superior atomic clock. Proc. Natl. Acad. Sci. USA 86, 3938 (1989)ADSCrossRefGoogle Scholar
  128. 128.
    E. Peik, J. Abel, Th. Becker, J. von Zanthier, H. Walther: Sideband cooling of ions in radiofrequency traps. Phys. Rev. A 60, 439–449 (1999)ADSCrossRefGoogle Scholar
  129. 129.
    J. von Zanthier, J. Abel, Th. Becker, M. Fries, E. Peik, H. Walther, R. Holzwarth, J. Reichert, Th. Udem, T. W. Hänsch, A.Yu. Nevsky, M. N. Skvortsov, S. N. Bagayev: Absolute frequency measurement of the 115Indium+ 5s 2 1 S 0-5s5p 3 P 0 transition. Opt. Commun. 166, 57–63 (1999)ADSCrossRefGoogle Scholar
  130. 130.
    B.G. Whitford: Uncertainty in frequency measurements at 88THz made with the NRC frequency chain: Frequency of the NRC HeNe/CH4 laser. Metrologia 30, 145–154 (1993)ADSCrossRefGoogle Scholar
  131. 131.
    S. N. Bagayev, A. K. Dmitriyev, P. V. Pokasov: Transportable He-Ne/CH4 frequency standard for precision measurements. Laser Phys. 7, 989–992 (1997)Google Scholar
  132. 132.
    P. A. Jungner, S. Swartz, M. Eickhoff, J. Ye, J. L. Hall, S. Waltman: Absolute frequency of the molecular iodine transition R(56)32-0 near 532 nm. IEEE Trans. Instrum. Meas. 44, 151–154 (1995)CrossRefGoogle Scholar
  133. 133.
    H. R. Telle, D. Meschede, T. W. Hänsch: Realization of a new concept for visible frequency division: phase locking of harmonic and sum frequencies, Opt. Lett. 15, 532–534 (1990)ADSCrossRefGoogle Scholar
  134. 134.
    K. Nakagawa, M. Kourogi, M. Ohtsu: Proposal of a frequency-synthesis chain between the microwave and optical frequencies of the Ca intercombination line at 657 nm using diode lasers. Appl. Phys. B 57, 425–430 (1993)ADSCrossRefGoogle Scholar
  135. 135.
    M. Kourogi, K. Nakagawa, M. Ohtsu: Wide-span optical frequency comb generator for accurate optical frequency difference measurement. IEEE J. Quantum Electron. QE-29, 2693–2701 (1993)CrossRefADSGoogle Scholar
  136. 136.
    H. Schnatz, B. Lipphardt, J. Helmcke, F. Riehle, G. Zinner: First phase-coherent frequency measurement of visible radiation. Phys. Rev. Lett. 76, 18–21 (1996)ADSCrossRefGoogle Scholar
  137. 137.
    J. E. Bernard, B. G. Whitford, L. Marmet: Phase-locked optical divide-by-3 system for visible radiation. Opt. Lett. 24, 98–100 (1999)ADSCrossRefGoogle Scholar
  138. 138.
    J. E. Bernard, B. G. Whitford, A. A. Madej: A Tm: YAG laser for optical frequency measurements: mixing 148 THz light with CO2 laser radiation. Opt. Commun. 140, 45–48 (1997)ADSCrossRefGoogle Scholar
  139. 139.
    Th. Udem, A. Huber, B. Gross, J. Reichert, M. Prevedelli, M. Weitz, T. W. Hänsch: Phase-coherent measurement of the hydrogen 1S- 2S transition frequency with an optical frequency interval divider. Phys. Rev. Lett. 79, 2646–2649 (1997)ADSCrossRefGoogle Scholar
  140. 140.
    O. Acef: Metrological properties of CO2/OsO4 optical frequency standard. Opt. Commun. 134, 479–486 (1997)ADSCrossRefGoogle Scholar
  141. 141.
    O. Acef: Accurate frequency measurements in the infrared using stabilized CO2/OsO4 lasers. In: Conference on Precision Electromagnetic Measurements, Washington, USA, T. L. Nelson (Ed.) (IEEE, Piscataway, NJ 1998)pp. 400–405Google Scholar
  142. 142.
    F. Riehle, H. Schnatz, B. Lipphardt, G. Zinner, T. Trebst, J. Helmke: The optical calcium frequency standard. In: Conference on Precision Electromagnetic Measurements, Washington, USA, T. L. Nelson (Ed.) (IEEE, Piscataway, NJ 1998)pp. 299–300Google Scholar
  143. 143.
    O. Acef, A. Clairon, L. Hilico, D. G. Rovera, G. Kramer, B. Lipphardt, A. Shelkovnikov, E. Koval’chuk, E. Petrukhin, D. Tyurikov, M. Petrovskiy, M. Gubin: Absolute frequency measurements and intercomparisons of He-Ne/CH4 (λ = 3.39µCO2/OsO4 (λ = 10.6 µfrequency stabilized lasers and a Cs primary standard. In: Conference on Precision Electromagnetic Measurements, Washington, USA, T. L. Nelson (Ed.) (IEEE, Piscataway, NJ 1998)pp. 258–259Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2001

Authors and Affiliations

  • Alan A. Madej
    • 1
  • John E. Bernard
    • 1
  1. 1.Frequency and Time Group, Institute for National Measurement StandardsNational Research Council of CanadaOttawaCanada

Personalised recommendations