Recent Developments in Microwave Ion Clocks

  • John D. Prestage
  • Robert L. Tjoelker
  • Lute Maleki
Part of the Topics in Applied Physics book series (TAP, volume 79)


We review the development of microwave-frequency standards based on trapped ions. Following two distinct paths, microwave ion clocks have evolved greatly in the last twenty years since the earliest Paul-trap-based units. Laser-cooled ion frequency standards reduce the second-order Doppler shift from ion micromotion and thermal secular motion achieving good signal-to-noise ratios via cycling transitions where as many as ≈ 108 photons per second per ion may be scattered. Today, laser-cooled ion standards are based on linear Paul traps which hold ions near the node line of the trapping electric field, minimizing micromotion at the trapping-field frequency and the consequent second-order Doppler frequency shift. These quadrupole (radial) field traps tightly confine tens of ions to a crystalline single-line structure. As more ions are trapped, space charge forces some ions away from the node-line axis and the second-order Doppler effect grows larger, even at negligibly small secular temperatures. Buffer-gas-cooled clocks rely on large numbers of ions, typically ≈ 107, optically pumped by a discharge lamp at a scattering rate of a few photons per second per ion. To reduce the second-order Doppler shift from space charge repulsion of ions from the trap node line, novel multipole ion traps are now being developed where ions are weakly bound with confining fields that are effectively zero through the trap interior and grow rapidly near the trap electrode “walls”.


Paul Trap Clock Transition Quadrupole Trap Linear Trap Linear Paul Trap 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    G. J. Dick, R. T. Wang, R. L. Tjoelker: Cryo-cooled sapphire oscillator with ultra-high stability. IEEE Int. Freq. Control Symp. Proc. 52, 528–533 (1998)Google Scholar
  2. 2.
    D. J. Berkeland, J. D. Miller, J. C. Bergquist, W. M. Itano, D. J. Wineland: Laser-cooled mercury ion frequency standard. Phys. Rev. Lett. 80, 2089–2092 (1998)CrossRefADSGoogle Scholar
  3. 3.
    R. F. Wuerker, H. Sheldon, R. V. Langmuir: Electrodynamic containment of charged particles. J. Appl. Phys. 30, 342–349 (1959)CrossRefADSGoogle Scholar
  4. 4.
    H. G. Dehmelt: Radio-frequency spectroscopy of stored ions I: storage. Adv. Atom. Molec. Phys. 3, 53–72 (1969)CrossRefGoogle Scholar
  5. 5.
    P. T.H. Fisk: Trapped-ion and trapped-atom microwave frequency standards. Rep. Prog. Phys. 60(8), 761–818 (1997)CrossRefADSGoogle Scholar
  6. 6.
    D. J. Berkeland, J. D. Miller, F. C. Cruz, B.C. Young, R. J. Rafac, X. P. Huang, W. M. Itano, J. C. Bergquist, D. J. Wineland: High-resolution, high-accuracy spectroscopy of trapped ions. Atomic Phys. 16, 29–41 (1999)ADSGoogle Scholar
  7. 7.
    J. D. Prestage, R. L. Tjoelker, G. J. Dick, L. Maleki: Ultra-stable Hg+ trapped ion frequency standard. J. Mod. Opt. 39, 221–232 (1992)CrossRefADSGoogle Scholar
  8. 8.
    J. J. Bollinger, D. J. Heinzen, W. M. Itano, S. L. Gilbert, D. J. Wineland: A 303 MHz frequency standard based on trapped Be+ ions. IEEE Trans. Instrum. Meas. 40, 126 (1991)CrossRefGoogle Scholar
  9. 9.
    U. Tanaka, H. Imajo, K. Hayasaks, R. Omukai, M. Watanabe, S. Urabe: Determination of the ground-state hyperfine splitting of trapped 113Cd+ ions. Phys. Rev. A 53, 3982–3985 (1996)CrossRefADSGoogle Scholar
  10. 10.
    G. J. Dick, C. A. Greenhall: L. O. limited frequency stability for passive atomic frequency standards using square wave frequency modulation. IEEE Int. Freq. Control Symp. Proc. 52, 99–103 (1998)Google Scholar
  11. 11.
    P. Lemonde, G. Santarelli, P. Laurent, F. P.D. Santos, A. Clairon, C. Salomon: The sensitivity function: a new tool for the evaluation of frequency shifts in atomic spectroscopy. IEEE Int. Freq. Control Symp. Proc. 52, 110–115 (1998)Google Scholar
  12. 12.
    J. Hoffnagle, R. G. Devoe, L. Reyna, R. G. Brewer: Order-chaos transition of two trapped ions. Phys. Rev. Lett. 61, 255–258 (1988)CrossRefADSGoogle Scholar
  13. 13.
    R. G. Brewer, J. Hoffnagle, R. G. Devoe, L. Reyna, W. Henshaw: Collision-induced two-ion chaos. Nature 344, 305–309 (1990)CrossRefADSGoogle Scholar
  14. 14.
    R. Blumel, J. M. Chen, E. Peik, W. Quint, W. Schleich, Y. R. Shen, H. Walther: Phase transitions of stored laser-cooled ions. Nature 334(6180), 309–313 (1988)CrossRefADSGoogle Scholar
  15. 15.
    R. Blumel, C. Kappler, W. Quint, H. Walther: Chaos and order of laser-cooled ions in a Paul trap. Phys. Rev. A 40, 808–823 (1989)CrossRefADSGoogle Scholar
  16. 16.
    J. D. Prestage, G. J. Dick, L. Maleki: New ion trap for frequency standard applications. J. Appl. Phys. 66, 1013–1017 (1989)CrossRefADSGoogle Scholar
  17. 17.
    R. B. Warrington, P. T.H. Fisk, M. J. Wouters, M. A. Lawn, C. Coles: The CSIRO trapped 171Yb+ ion clock: Improved accuracy through laser-cooled operation. Joint EFTF/IEEE Int. Freq. Control Symp. Proc. 53 (1999) in pressGoogle Scholar
  18. 18.
    J. D. Prestage, R. L. Tjoelker, G. J. Dick, L. Maleki: Improved linear ion trap physics package. IEEE Int. Freq. Control Symp. Proc. 47, 144–147 (1993)CrossRefGoogle Scholar
  19. 19.
    D. Gerlich: Inhomogeneous RF fields: a versatile tool for the study of processes with slow ions. Adv. Chem. Phys. LXXXII, 1–176 (1992)CrossRefGoogle Scholar
  20. 20.
    L. S. Cutler, C. A. Flory, R. P. Giffard, M. D. McGuire: Doppler effects due to thermal macromotion of ions in an rf quadrupole trap. Appl. Phys. B 39, 251–259 (1986)CrossRefADSGoogle Scholar
  21. 21.
    L. S. Cutler, R. P. Giffard, M. D. McGuire: A trapped mercury-199 ion frequency standard. In: Proc. 13th Annu. PTTI Application and Planning Meeting, NASA Conf. Pub. 2220, 563–578 (1981)Google Scholar
  22. 22.
    J. D. Prestage, R. L. Tjoelker, L. Maleki: Higher pole linear traps for atomic clock applications. Joint EFTF/IEEE Int. Freq. Control Symp. Proc. 53 (1999) in pressGoogle Scholar
  23. 23.
    G. R. Janik, J. D. Prestage, L. Maleki: Simple analytic potentials for linear ion traps. J. Appl. Phys. 67, 6050–6055 (1990)CrossRefADSGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2001

Authors and Affiliations

  • John D. Prestage
    • 1
  • Robert L. Tjoelker
    • 1
  • Lute Maleki
    • 1
  1. 1.Jet Propulsion LaboratoryCalifornia Institute of TechnologyPasadena

Personalised recommendations