Optical Frequency Measurement by Conventional Frequency Multiplication

  • Carl O. Weiss
  • G. Kramer
  • B. Lipphardt
  • H. Schnatz
Part of the Topics in Applied Physics book series (TAP, volume 79)


Measurements of several stable optical frequencies using the PTB frequency chain are reported. The measurement scheme together with the ingredients (radiation sources, nonlinear elements, coherence) for such measurements are discussed. A comparison of different frequency chains is reported and the measurements planned for the near future are mentioned.

It is generally hoped that a high (e.g. optical) frequency atomic quantum transition can improve the accuracy of future frequency standards over those presently available, which are based upon microwave transitions. This is suggested by the fact that the homogeneous linewidth of an atomic transition the quantity with the largest influence on the accuracy of a standard, is largely independent of the transition frequency.


Phase Noise Josephson Junction Optical Frequency Schottky Diode Frequency Standard 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    T. Andrae, W. König, R. Wynands, D. Leibfried, F. Schmidt-Kaler, C. Zimmermmann, D. Meschede, T. W. Hänsch: Absolute frequency measurement of the hydrogen 1S-2S transition and a new value of the Rydberg constant. Phys. Rev. Lett. 69, 1923–1926 (1992)CrossRefADSGoogle Scholar
  2. 4.
    W. M. Kelly, G. T. Wrixon: Conversion losses in Schottky-barrier diode mixers in the submillimeter region. IEEE Trans Microwave Theory Tech. 27, 665–667 (1979)CrossRefADSGoogle Scholar
  3. 5.
    Y. Miki, A. Onae, T. Kurosawa, Y. Akimoto, E. Sakuma: Frequency chain to 3.39 µm CH4-stabilized He-Ne laser using Josephson point contact as harmonic mixer. Jpn. J. Appl. Phys. 33, 1655–1658 (1994)CrossRefADSGoogle Scholar
  4. 6.
    K. M. Evenson, J. S. Wells, F. R. Petersen, B. L. Danielson, G. W. Day: Speed of light from direct frequency and wavelength measurements of the methane-stabilized laser. Phys. Rev. Lett. 29, 1346–1349 (1972)CrossRefADSGoogle Scholar
  5. 7.
    V. F. Zakhar’yash, V. M. Klement’ev, M. V. Nihitin, B. A. Timchenko, V. P. Chebotaev: Absolute measurement of the frequency of the E-line of methane. Sov. Phys. Tech. Phys. 28, 1374–1375 (1983)Google Scholar
  6. 8.
    see e.g. T. G. Blaney, C. C. Bradley, G. J. Edwards, D. J. E. Knight: Absolute frequency measurement of a Lamb-dip stabilized water vapour laser oscillating at 10.7 THz (28 mm) Phys. Lett. A 43, 471–472 (1973)CrossRefADSGoogle Scholar
  7. 9.
    T. Y. Chang, T. J. Bridges: Laser action at 452, 496, and 541 µm in optically pumped CH3. Opt. Commun. 1, 432–436 (1970)CrossRefADSGoogle Scholar
  8. 10.
    K. Button, M. Inguscio, F. Strumia (Eds.): Reviews of Infrared and Millimeter Waves, Vol. 2 (Plenum, New York 1984)Google Scholar
  9. 11.
    C. O. Weiss, G. D. Willenberg: Studies on continuous Raman hyper-Raman lasers in the far infrared. Ind. J. Pure Appl. Phys. 26, 102–107 (1988)Google Scholar
  10. 12.
    G. D. Willenberg, C.O. Weiss, H. Jones: Two-photon pumped cw laser. Appl. Phys. Lett. 37, 133–135 (1980)CrossRefADSGoogle Scholar
  11. 13.
    C.O. Weiss, G. D. Willenberg, J. W. Won, H. R. Telle: Far infrared laser emission by microwave-infrared-far-infrared three-photon interaction in NH3. IEEE J. Quantum Electron. 21, 6–9 (1985)CrossRefADSGoogle Scholar
  12. 14.
    J. Heppner, C.O. Weiss: Far-infrared ring laser. Appl. Phys. Lett. 33, 590–592 (1978)CrossRefADSGoogle Scholar
  13. 15.
    C. O. Weiss, P. S. Ering, M. Cooper: Instabilities and chaos of a single mode NH3 ring laser. Opt. Commun. 52, 405–408 (1984)CrossRefADSGoogle Scholar
  14. 16.
    C.O. Weiss: Optically pumped FIR laser with variable Fabry-Perot output coupler. Appl. Phys. 13, 383–385 (1977)CrossRefADSGoogle Scholar
  15. 17.
    L. Czerny: Messungen an Steinsalz im Ultraroten zur Prüfung der Dispersionstheorie. Z. Phys. 65, 600–631 (1930)CrossRefADSGoogle Scholar
  16. 19.
    L. O. Hocker, A. Javan, A. Ramachandra Rao: Absolute frequency measurement and spectroscopy of gas laser transitions in the far infrared. Appl. Phys. Lett. 10, 147–149 (1967)CrossRefADSGoogle Scholar
  17. 20.
    D. A. Jennings, F. R. Peterson, K. M. Evenson: Laser Spectroscopy IV, H. Walter, K. Rothe (Eds.) (Springer, Berlin, Heidelberg 1979)p. 39Google Scholar
  18. 21.
    H. H. Klingenberg, C. O. Weiss: Rectification and harmonic generation with metal-insulator-metal diodes. Appl. Phys. Lett. 43, 361–363 (1983)CrossRefADSGoogle Scholar
  19. 22.
    G. Kramer: Characteristics of W-Ni and W-Co point contacts, precise frequencies of some FIR laser lines, Proceedings of the 2nd Frequency Standards and Metrology Symposium, pp. 469–478 (1976)Google Scholar
  20. 23.
    L. M. Matarrese, K. M. Evenson: Improved coupling to infrared whisker diodes by use of antenna theory. Appl. Phys. Lett. 17, 8–10 (1979)CrossRefADSGoogle Scholar
  21. 24.
    K. M. Evenson, M. Inguscio, D. A. Jennings: Point contact diode at laser frequencies. J. Appl. Phys. 57, 956–960 (1985)CrossRefADSGoogle Scholar
  22. 25.
    C. Fumeaux, W. Herrmann, F. K. Kneubühl, H. Rothuizen, B. Lipphardt, C.O. Weiss: Nanometer thin film Ni-Ni0-Ni diodes for mixing 28 THz CO2-laser emissions with difference frequencies up to 176 GHz. Appl. Phys. B 66, 327–332 (1998)CrossRefADSGoogle Scholar
  23. 26.
    K. K. Likharev: em Dynamics of Josephson Junctions and-contacts (Gordon, Breach, Amsterdam 1986)Google Scholar
  24. 27.
    S. R. Stein, J. P. Turneaure: Superconducting-cavity stabilized oscillators with improved frequency stability. Proc. IEEE 63, 1249–1250 (1975)ADSCrossRefGoogle Scholar
  25. 28.
    T. W. Tsang, S. E. Schwarz: Transport theory of high-frequency rectification in Schottky-barriers. J. Appl. Phys. 50, 3459–3471 (1979)CrossRefADSGoogle Scholar
  26. 29.
    C. O. Weiss, A. Godone: Extension of frequency measurements with Schottky diodes to the 4 THz range. Appl. Phys. B 27, 167–168 (1982)CrossRefADSGoogle Scholar
  27. 30.
    C. O. Weiss, A. Godone: Harmonic mixing and detection with Schottky diodes up to the 5 THz range. IEEE J. Quantum Electron. 20, 97–99 (1984)CrossRefADSGoogle Scholar
  28. 31.
    J. W. Won, C. O. Weiss: FIR frequency measurement with a waveguide-optical harmonic mixer. IEEE Trans. Instrum. Meas. 38, 541–542 (1989)CrossRefGoogle Scholar
  29. 32.
    C. O. Weiss, T. Sakurai: Order harmonic mixing to 3.7 THz using a Schottky diode. Opt. Commun. 62, 351–352 (1987)CrossRefADSGoogle Scholar
  30. 33.
    Y. C. Ni, C. O. Weiss: Simple frequency measurement chain to 30 THz. Appl. Phys. B 50, 381–383 (1990)CrossRefADSGoogle Scholar
  31. 34.
    Experiments carried out by C. O. Weiss and P. S. Ering, unpublishedGoogle Scholar
  32. 35.
    H. Krautle, E. Sauter, G. V. Schultz: Antenna characteristics of whisker diodes used as submillimeter receivers. Infrared Phys. 17, 477–483 (1977)CrossRefADSGoogle Scholar
  33. 36.
    D. Y. Tang, M. Y. Li, C. O. Weiss: Field dynamics of a single-mode-laser. Phys. Rev. A 44, 7597–7604 (1991)CrossRefADSGoogle Scholar
  34. 37.
    H. R. Fettermann, P. E. Tannenwald, B. J. Clifton, D. Parker, W. D. Fitzgerald, L. R. Ericson: Far-ir heterodyne radiometric measurements with quasioptical Schottky diode mixers. Appl. Phys. Lett. 33, 151–154 (1978)CrossRefADSGoogle Scholar
  35. 38.
    C. O. Weiss, R. Vilaseca: Dynamics of Lasers (VCH, Weinheim 1991)Google Scholar
  36. 39.
    R. L. Barger, J. L. Hall: Pressure shift and broadening of methane line at 3.39 m studied by laser-saturated molecular absorption. Phys. Rev. Lett. 22, 4–8 (1969)CrossRefADSGoogle Scholar
  37. 40.
    G. Kramer: Linear optical “Ramsey” resonance by means of a spacially modulated beam. J. Opt. Soc. Am. 68, 1634–1635 (1978)ADSGoogle Scholar
  38. 41.
    M. A. Gubin, D. A. Tyurikov, A. Shelkolnikov, E. V. Kovalchuk, G. Kramer, B. Lipphardt: Transportable He-Ne CH4 optical frequency standard and absolute measurements of its frequency. IEEE J. Quantum Electron. 31, 2177–2188 (1995)CrossRefADSGoogle Scholar
  39. 42.
    P. S. Ering, D. A. Tyurikov, G. Kramer, B. Lipphardt: Measurement of the absolute frequency of the methane E-line at 88 THz. Opt. Commun. 151, 229–234 (1998)CrossRefADSGoogle Scholar
  40. 44.
    H. R. Telle: Frequency Control of Semiconductor Lasers, M. Ohtsu (Ed.) (Wiley, New York 1996)p. 137Google Scholar
  41. 45.
    C. O. Weiss, G. Kramer, B. Lipphardt, E. Garcia: Frequency measurement of a CH4 hyperfine line at 88 THz/“optical clock”. IEEE J. Quantum Electron. 24, 1970–1972 (1988)CrossRefADSGoogle Scholar
  42. 46.
    A. S. Shelkovnikov, E. Kovalchuk, M. A. Gubin, R. Felder, O. Acev, G. D. Rovera, B. G. Kramer, B. Lipphardt, S. Lea: Absolute frequency measurement, with a set of transportable Methan, optical frequency standards. Proc. of EFIF-IEEE IFCS, pp. 742–745 (1999)Google Scholar
  43. 47.
    F. Riehle, H. Schnatz, B. Lipphardt, G. Zimmer, T. Trebst, J. Helmcke: Frequency measurements of visible light. In Trapped Charged Particles and Fundamental Physics, D. H. Dubin, D. Schneider (Eds.), AIP Conf. Proc. 457 (American Inst. Physics, Woodbury, NY 1999)Google Scholar
  44. 48.
    H. Li, H. R. Telle: Efficient frequency noise reduction of GaAlAs semiconductor lasers by optical feedback from an external high-finesse resonator. IEEE J. Quantum Electron. 25, 257–264 (1989)CrossRefADSGoogle Scholar
  45. 49.
    D. J. E. Knight, K. I. Pharao, M. Zucco: Frequency mixing to the 4th order in metal-insulator-metal diodes at 193 Thz, 1,55µ Proc. 5th Symp. on Frequency Standards and Metrology. Woods Hole, pp. 465–467 (1995)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2001

Authors and Affiliations

  • Carl O. Weiss
    • 1
  • G. Kramer
    • 1
  • B. Lipphardt
    • 1
  • H. Schnatz
    • 1
  1. 1.Physikalisch-Technische BundesanstaltBraunschweigGermany

Personalised recommendations