Electronic Noise in Magnetic Materials and Devices

  • B. Raquet
Part of the Lecture Notes in Physics book series (LNP, volume 569)


With the development of magnetic devices and new materials for spin electronics on the sub-micron scale, we consider the relevant properties of electronic noise in magnetic solid-state microstructures. We review the most common types of electronic fluctuations in materials, namely, thermal noise, shot noise, 1/f noise and random telegraph noise. In each case, the discussion is illustrated by recent reports on electronic noise in magnetic materials and devices. We show that the resistance fluctuation measurement is an unique tool to probe the dynamics of magnetic instabilities and their coupling to the charge carriers via spin dependent scattering processes on a nanometric scale. We finally consider electronic noise in promising materials and devices for spin electronic applications like half metallic oxides, CMR perovskites and GMR-based magnetic sensors. Comments on recent results point out fundamental properties of the electronic and magnetic ground states which can be extracted from noise measurements. Special attention is paid to the noise behaviour and the signal-to-noise ratio in magneto-electronic applications.


Power Spectral Density Thermal Noise Shot Noise Magnetic Domain Resistance Switching 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Sh. Kogan, in “Electronic Noise and Fluctuations in Solids”, Cambridge University Press, Cambridge (1996).Google Scholar
  2. 2.
    M. B. Weissman, Rev. Mod. Phys. 65, 4829 (1993); 60, 537 (1988).CrossRefGoogle Scholar
  3. 3.
    D. A. Bell, in “Noise and the Solid State”, Pentech Press, London (1985).Google Scholar
  4. 4.
    M. J. Buckingham, in “Noise in Electronic Devices and Systems”, J. Wiley & Sons, New York (1983).Google Scholar
  5. 5.
    P. Dutta and P. M. Horn, Rev. Mod. Phys. 53, 497 (1981).CrossRefGoogle Scholar
  6. 6.
    A. van der Ziel, Adv. Electron. Phys. 49, 225 (1979).CrossRefGoogle Scholar
  7. 7.
    F. Coppinger, J. Genoe, D. K. Maude, U. Gennser, J. C. Portal, K. E. Singer, P. Rutter, T. Taskin, A. R. Peaker, and A. C. Wright, Phys. Rev. Lett. 75, 3513 (1995); F. Coppinger, J. Genoe, D. K. Maude, X. Kleber, L. B. Rigal, U. Gennser, J. C. Portal, K. E. Singer, P. Rutter, T. Taskin, A. R. Peaker, and A. C. Wright, Phys. Rev. B 57, 7182 (1998).CrossRefGoogle Scholar
  8. 8.
    B. Raquet, A. Anane, S. Wirth, P. Xiong, and S. von Molnár, Phys. Rev. Lett. 84, 4485 (2000).CrossRefGoogle Scholar
  9. 9.
    D. D. Awschalom and J. M. Kikkawa, Phys. Today 52, 33 (1999).CrossRefGoogle Scholar
  10. 10.
    G. A. Prinz, Science 282, 1660 (1998); Phys. Today 48, 58 (1995).CrossRefGoogle Scholar
  11. 11.
    J. L. Simmonds, Phys. Today 48, 26 (1995).CrossRefGoogle Scholar
  12. 12.
    J. M. D. Coey, M. Viret, and S. von Molnár, Adv. Phys. 48, 167 (1999).CrossRefGoogle Scholar
  13. 13.
    J. M. D. Coey, Phil. Trans. R. Soc. Lond. A 356, 1519 (1998).CrossRefGoogle Scholar
  14. 14.
    H. Ohno, Science 281, 951 (1998).CrossRefGoogle Scholar
  15. 15.
    S. S. P. Parkin, K. P. Roche, M. G. Samant, P. M. Rice, R. B. Beyers, R. E. Scheulerlein, E. J. O’Sullivan, S. L. Brown, J. Bucchigano, D. W. Abraham, Y. Lu, M. Rooks, P. L. Trouilloud, R. A. Warner, and J. G. Gallagher, J. Appl. Phys. 85, 5828 (1999).CrossRefGoogle Scholar
  16. 16.
    L. S. Kirschenbaum, C. T. Rogers, S. E. Russek, and S. C. Sanders, IEEE Trans. Magn. 31, 3943 (1995).CrossRefGoogle Scholar
  17. 17.
    J. H. Scofield, Rev. Sci. Instrum. 58, 985 (1987).CrossRefGoogle Scholar
  18. 18.
    J. B. Johnson, Nature 119, 50 (1927); Phys. Rev. 29, 367 (1927).CrossRefGoogle Scholar
  19. 19.
    H. Nyquist, Phys. Rev. 32, 110 (1928).CrossRefGoogle Scholar
  20. 20.
    W. Schottky, Ann. Phys. (Leipzig) 57, 541 (1918).CrossRefGoogle Scholar
  21. 21.
    A. van der Ziel, Physica B 83, 41 (1976).CrossRefGoogle Scholar
  22. 22.
    E. R. Nowak, M. B. Weissman, and S. S. P. Parkin, Appl. Phys. Lett. 74, 600 (1999).CrossRefGoogle Scholar
  23. 23.
    S. Demolder, M. Vandendriessche, and A. van Calster, J. Phys.E 13, 1323 (1980).CrossRefGoogle Scholar
  24. 24.
    J. B. Johnson, Phys. Rev. 26, 71 (1925).CrossRefGoogle Scholar
  25. 25.
    S. Machlup, Proc. 6th Int. Conf. on Noise in Physical Systems, Gaithersburg, MD, USA, 157 (1981).Google Scholar
  26. 26.
    M. Gardner, Scientific American 238, 16 (1978).Google Scholar
  27. 27.
    R. F. Voss and J. Clarke, J. Acoust. Soc. Am. 63, 258 (1978).CrossRefGoogle Scholar
  28. 28.
    T. Musha, Proc. 6th Int. Conf. on Noise in Physical Systems, Gaithersburg, MD, USA, 143 (1981).Google Scholar
  29. 29.
    D. E. Burgess, T. A. Zimmerman, M. T. Wise, S.-G. Li, D. C. Randall, and D. R. Brown, Am. J. Physiol. Regulatory. Integrative. Comp. Physiol. 277, R894 (1999).Google Scholar
  30. 30.
    T. R. Wigton, R. E. Sabbagha, R. K. Tamura, L. Cohen, J. P. Minogue, and J. F. Strasburger, Obstet. Gynecol. 82, 219 (1993).Google Scholar
  31. 31.
    M. Xiao, K. B. Klaassen, J. C. L. van Peppen, and M. H. Kryder, J. Appl. Phys. 85, 5855 (1999).CrossRefGoogle Scholar
  32. 32.
    H. T. Hardner, M. J. Hurben, and N. Tabat, IEEE Trans. Magn. 35, 2592 (1999).CrossRefGoogle Scholar
  33. 33.
    A. Wallash, IEEE Trans. Magn. 34, 1450 (1998).CrossRefGoogle Scholar
  34. 34.
    M. A. M. Gijs, J. B. Giesbers, P. Belien, J. W. van Est, J. Briaire, and L. K. J. Vandamme, J. Magn. Magn. Mater. 165, 360 (1997).CrossRefGoogle Scholar
  35. 35.
    N. Smith, A. M. Zeltser, and M. R. Parker, IEEE Trans. Magn. 32, 135 (1996).CrossRefGoogle Scholar
  36. 36.
    R. J. M. van de Veerdonk, P. J. L. Belien, K. M. Schep, J. C. S. Kools, M. C. de Nooijer, M. A. M. Gils, R. Coehoorn, and W. J. M. de Jonge, J. Appl. Phys. 82, 6152 (1997).CrossRefGoogle Scholar
  37. 37.
    B. Doudin, G. Redmond, S. E. Gilbert, and J.-Ph. Ansermet, Phys. Rev. Lett. 79, 933 (1997).CrossRefGoogle Scholar
  38. 38.
    M. A. M. Gijs, J. B. Giesbers, J. W. van Est, J. Briaire, L. K. J. Vandamme, and P. Belien, J. Appl. Phys. 80, 2539 (1996).CrossRefGoogle Scholar
  39. 39.
    B. Raquet, J. M. D. Coey, S. Wirth, and S. von Molnár, Phys. Rev. B 59, 12435 (1999).CrossRefGoogle Scholar
  40. 40.
    A. Anane, B. Raquet, S. von Molnár, L. Pinsard-Godart, and A. Revcolevschi, J. Appl. Phys. 87, 5025 (2000).CrossRefGoogle Scholar
  41. 41.
    R. D. Merithew, M. B. Weissman, F. M. Hess, P. Spradling, E. R. Nowak, J. O’Donnell, J. N. Eckstein, Y. Tokura, and Y. Tomioka, Phys. Rev. Lett. 84, 3442 (2000).CrossRefGoogle Scholar
  42. 42.
    V. Podzorov, M. Uehara, M. E. Gershenson, T. Y. Koo, and S-W. Cheong, Phys. Rev. B 61, R3784 (2000).CrossRefGoogle Scholar
  43. 43.
    M. Rajeswari, R. Shreekala, A. Goyala, S. E. Lofland, S. M. Bhagat, K. Ghosh, R. P. Sharma, R. L. Greene, R. Ramesh, T. Venkatesan, and T. Boettcher, Appl. Phys. Lett. 73, 2670 (1998).CrossRefGoogle Scholar
  44. 44.
    S. K. Arora, R. Kumar, D. Kanjilal, R. Bathe, S. I. Patil, S. B. Ogale, and G. K. Mehta, Solid Stat. Comm. 108, 959 (1998).CrossRefGoogle Scholar
  45. 45.
    H. Jianhua and H. Kangquan, Chinese Science Bulletin 42, 163 (1997).CrossRefGoogle Scholar
  46. 46.
    H. T. Hardner, M. B. Weissman, M. Jaime, R. E. Treece, P. C. Dorsey, J. S. Horwitz, and D. B. Chrisey, J. Appl. Phys. 81, 272 (1997).CrossRefGoogle Scholar
  47. 47.
    M. Rajeswari, A. Goyal, A. K. Raychaudhuri, M. C. Robson, G. C. Xiong, C. Kwon, R. Ramesh, R. L. Greene, T. Venkatesan, and S. Lakeou, Appl. Phys.Lett. 69, 851 (1996).CrossRefGoogle Scholar
  48. 48.
    G. B. Alers, A. P. Ramirez, and S. Jin, Appl. Phys. Lett. 68, 3644 (1996).CrossRefGoogle Scholar
  49. 49.
    R. F. Voss and J. Clarke, Phys. Rev. B 13, 556 (1976).CrossRefGoogle Scholar
  50. 50.
    A. Caloyannides, J. Appl. Phys. 45, 307 (1974).CrossRefGoogle Scholar
  51. 51.
    F. N. Hooge and A. Hoppenbrouwers, Physica (Amsterdam) 45, 386 (1969); 42, 331 (1969).CrossRefGoogle Scholar
  52. 52.
    F. N. Hooge, Physica B 83, 14 (1976).CrossRefGoogle Scholar
  53. 53.
    T. G. M. Kleinpenning, J. Phys. Chem. Solids 37, 925 (1976).CrossRefGoogle Scholar
  54. 54.
    R. D. Black, P. J. Restle, and M. B. Weissman, Phys. Rev. B 28, 1935 (1983).CrossRefGoogle Scholar
  55. 55.
    C. T. Sah and F. H. Hielscher, Phys. Rev. Lett. 17, 956 (1966).CrossRefGoogle Scholar
  56. 56.
    F. N. Hooge, Phys. Lett. 29A, 139 (1969).Google Scholar
  57. 57.
    T. G. M. Kleinpenning, J. Appl. Phys. 51, 3438 (1980).CrossRefGoogle Scholar
  58. 58.
    M. B. Weissman, Physica B 100, 157 (1980).CrossRefGoogle Scholar
  59. 59.
    H. M. J. Vaes and T. G. M. Kleinpenning, J. Appl. Phys. 48, 5131 (1977).CrossRefGoogle Scholar
  60. 60.
    M. B. Weissman, J. Appl. Phys. 51, 5872 (1980).CrossRefGoogle Scholar
  61. 61.
    J. H. Scofield, J. V. Mantese, and W. W. Webb, Phys. Rev. B 32, 736 (1985).CrossRefGoogle Scholar
  62. 62.
    Z. Çelik-Butler and T. Y. Hsiang, Solid State Electron. 31, 241 (1988).CrossRefGoogle Scholar
  63. 63.
    M. Viret, Private Communication.Google Scholar
  64. 64.
    J. Bernamont, Ann. Phys. (Leipzig) 7, 71 (1937).Google Scholar
  65. 65.
    F. K. du Prè, Phys. Rev. 78, 615 (1950).CrossRefGoogle Scholar
  66. 66.
    A. L. McWhorter, in “Semiconductor Surface Physics”, R. H. Kingston (ed.), University of Pennsylvania Press, Philadelphia, p.207 (1957).Google Scholar
  67. 67.
    P. Dutta, P. Dimon, and P.M. Horn, Phys. Rev. Lett. 43, 646 (1979).CrossRefGoogle Scholar
  68. 68.
    J. H. Scofield, J. V. Mantese, and W. W. Webb, Phys. Rev. B 34, 723 (1986).CrossRefGoogle Scholar
  69. 69.
    J. Pelz and J. Clarke, Phys. Rev. Lett. 55, 738 (1985).CrossRefGoogle Scholar
  70. 70.
    D. M. Fleetwood, T. Postel, and N. Giordano, J. Appl. Phys. 56, 3256 (1984).CrossRefGoogle Scholar
  71. 71.
    J. H. Scofield, D. H. Darling, and W. W. Webb, Proc. 6th Int. Conf. on Noise in Physical Systems, Gaithersburg, MD, USA, 147 (1981).Google Scholar
  72. 72.
    P. H. Handel, Phys. Rev. Lett. 34, 1492 (1975); 34, 1495 (1975); Phys. Lett. 53A, 438 (1975).CrossRefGoogle Scholar
  73. 73.
    P. de Los Rios and Y. C. Zhang, Phys. Rev. Lett. 82, 472 (1999).CrossRefGoogle Scholar
  74. 74.
    P. Bak, C. Tang, and K. Wiesenfeld, Phys. Rev. Lett. 59, 381 (1987); Phys. Rev. A 38, 364 (1988).CrossRefGoogle Scholar
  75. 75.
    W. Reim, R. H. Koch, A. P. Malozemoff, M. B. Ketchen, and H. Maletta, Phys. Rev. Lett. 57, 905 (1986).CrossRefGoogle Scholar
  76. 76.
    M. B. Weissman, Rev. Mod. Phys. 65, 829 (1993).CrossRefGoogle Scholar
  77. 77.
    H. B. Callen and T. A. Welton, Phys. Rev. 83, 34 (1951).CrossRefGoogle Scholar
  78. 78.
    N. E. Israeloff, M. B. Weissman, G. A. Garfunkel, D. J. Van Harlingen, J. H. Scofield, and A.J. Lucero, Phys. Rev. Lett. 60, 152 (1988).CrossRefGoogle Scholar
  79. 79.
    M. B. Weissman and N. E. Israelo., J. Appl. Phys. 67, 4884 (1990).CrossRefGoogle Scholar
  80. 80.
    N. Giordano, Phys. Rev. B 53, 14937 (1996).CrossRefGoogle Scholar
  81. 81.
    P. J. Restle, R. J. Hamilton, M. B. Weissman, and M. S. Love, Phys. Rev. B 31, 2254 (1985).CrossRefGoogle Scholar
  82. 82.
    C. Parman, N. E. Israelo., and J. Kakalios, Phys. Rev. B 44, 8391 (1991).CrossRefGoogle Scholar
  83. 83.
    B. Raquet, B. Aronzon, V. V. Rylkov, E. Z. Meilikhov, N. Negre, M. Goiran, and J. Leotin, unpublished.Google Scholar
  84. 84.
    M. J. Kirton and M. J. Uren, Adv. Phys. 38, 367 (1989).CrossRefGoogle Scholar
  85. 85.
    L. M. Lust and J. Kakalios, Phys. Rev. Lett. 75, 2192 (1995).CrossRefGoogle Scholar
  86. 86.
    K. S. Ralls and R. A. Buhrman, Phys. Rev. Lett. 60, 2434 (1988).CrossRefGoogle Scholar
  87. 87.
    K. R. Farmer, C. T. Rogers, and R.A. Buhrman, Phys. Rev. Lett. 58, 2255 (1987).CrossRefGoogle Scholar
  88. 88.
    M. N. Baibich, J. M. Broto, A. Fert, F. Nguyen van Dau, F. Petro., P. Etienne, G. Creuset, A. Friedrich, and J. Chazeles, Phys. Rev. Lett. 61, 2472 (1988).CrossRefGoogle Scholar
  89. 89.
    A. M. Bratkovsky, JETP, 65, 452 (1997); Phys. Rev. B 56, 2344 (1997).CrossRefGoogle Scholar
  90. 90.
    C. T. Tanaka, J. Nowak, and J. S. Moodera, J. Appl. Phys. 81, 5515 (1997).CrossRefGoogle Scholar
  91. 91.
    C. T. Tanaka and J. S. Moodera, J. Appl. Phys. 79, 6265 (1996).CrossRefGoogle Scholar
  92. 92.
    J. S. Moodera and D. M. Mootoo, J. Appl. Phys. 76, 6101 (1994).CrossRefGoogle Scholar
  93. 93.
    M. Viret, M. Drouet, J. Nassar, J. P. Contour, C. Fermon, and A. Fert, Europhys. Lett. 39, 545 (1997).CrossRefGoogle Scholar
  94. 94.
    S. Gardelis, C. G. Smith, C. H. W. Barnes, E. H. Linfield, and D. A. Ritchie, Phys. Rev. B 60,7764 (1999).CrossRefGoogle Scholar
  95. 95.
    P. R. Hammar, B. R. Bennett, M. J. Yang, and M. Johnson, Phys. Rev. Lett. 83, 203 (1999).CrossRefGoogle Scholar
  96. 96.
    R. Fiederling, M. Keim, G. Reuscher, W. Ossau, G. Schmidt, A. Waag, and L. W. Molenkamp, Nature 402, 787 (1999).CrossRefGoogle Scholar
  97. 97.
    Y. Ohno, D. K. Young, B. Beschoten, F. Matsukura, H. Ohno, and D. D. Awschalom, Nature 402, 790 (1999).CrossRefGoogle Scholar
  98. 98.
    H. T. Hardner, Thesis, University of Illinois (1996).Google Scholar
  99. 99.
    S. Scouten, Y. Xu, B. H. Moeckly, and R. A. Buhrman, Phys. Rev. B. 50, 16121 (1994).CrossRefGoogle Scholar
  100. 100.
    L. Liu, K. Zhang, H. M. Jaeger, D. B. Buchholz, and R. P. H. Chang, Phys. Rev. B 49, 3679 (1994).CrossRefGoogle Scholar
  101. 101.
    A. Barry, J. M. D. Coey, L. Ranno, and K. Ounadjela, J. Appl. Phys. 83, 7166 (1998).CrossRefGoogle Scholar
  102. 102.
    K. Steenbeck, T. Eick, K. Kirsch, H.-G. Schmidt, and E. Steinbeiβ, Appl. Phys. Lett. 73, 2506 (1998); N. K. Todd, N. D. Mathur, S. P. Isaac, J. E. Evetts, and M. G. Blamire, J. Appl. Phys. 85 7263 (1999).CrossRefGoogle Scholar
  103. 103.
    Y. Xu, V. Dworak, A. Drechsler, and U. Hartmann, Appl. Phys. Lett. 74, 2513 (1999).CrossRefGoogle Scholar
  104. 104.
    E. L. Nagaev, Physics-Uspekhi 39, 781 (1996).CrossRefGoogle Scholar
  105. 105.
    A. Moreo, S. Yunoki, and E. Dagotto, Science 283, 2034 (1999).CrossRefGoogle Scholar
  106. 106.
    P. Schlottmann, Phys. Rev. B 59, 11484 (1999).CrossRefGoogle Scholar
  107. 107.
    R. Rammal, C. Tannous, P. Breton, and A-M. S. Tremblay, Phys. Rev. Lett. 54, 1718 (1985).CrossRefGoogle Scholar
  108. 108.
    Z. Rubin, S. A. Sunshine, M. B. Heaney, I. Bloom, and I. Balberg, Phys. Rev. B 59, 12196 (1999).CrossRefGoogle Scholar
  109. 109.
    A. Anane, Private Communication.Google Scholar
  110. 110.
    H. T. Hardner, M. B. Weissman, M. B. Salamon, and S. S. P. Parkin, Phys. Rev. B 48, 16156 (1993).CrossRefGoogle Scholar
  111. 111.
    H. T. Hardner, M. B. Weissman, B. Miller, R. Loloee, and S. S. P. Parkin, J. Appl. Phys. 79, 7751 (1996).CrossRefGoogle Scholar
  112. 112.
    J. X. Shen, C. Xie, J. Ding, A. Shultz, and S. H. Liao, IEEE Trans. Magn. 35, 2595 (1999).CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2001

Authors and Affiliations

  • B. Raquet
    • 1
  1. 1.Laboratoire de Physique de la Matière Condensée de ToulouseLPMCT-LNCMP-INSAFrance

Personalised recommendations