Observation of Micromagnetic Configurations in Mesoscopic Magnetic Elements

  • K. Ounadjela
  • I. L. Prejbeanu
  • L. D. Buda
  • U. Ebels
  • M. Hehn
Part of the Lecture Notes in Physics book series (LNP, volume 569)


Advances in materials growth and characterization have, over the past ten years, made possible the investigation of basic physical processes in new “artificial” materials. These materials are artificial in the sense that the geometry and composition are controlled during growth on micrometer and nanometer length scales. This results in macroscopic behaviour that can be dramatically different from that of a material in its bulk form. Magnetic order and reversal processes, which have been extensively studied since the turn of the century, are now being re-examined for nanostructured materials.

The results presented here for the different magnetization configurations observed in submicron magnetic dots, rings and wires exemplify current state-of-the-art growth, lithography and imaging technologies. Using these geometries the potential for precise control of micromagnetic behaviour in patterned materials by control of shape and size is demonstrated. The boundaries between the different ground state configurations have been established experimentally as a function of the lateral width and height. Furthermore, metastable configurations can be induced following specific magnetization histories.


Domain Wall Single Domain Electron Beam Lithography Critical Diameter Vortex State 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    P. Grünberg, R. Schreiber, Y. Pang, M. Brodsky and H. Sowers, Phys. Rev. Lett. 57, 2442 (1986).CrossRefGoogle Scholar
  2. 2.
    K. Ounadjela, D. Muller, A. Dinia, A. Arbaoui, P. Panissod, and G. Suran, Phys. Rev. B 45, 7768 (1992).CrossRefGoogle Scholar
  3. 3.
    P. J. H. Bloemen, H. W. van Kerstern, H. J. M. Swagten, and W. J. M. de Jonge, Phys. Rev. B 50, 13505 (1994).CrossRefGoogle Scholar
  4. 4.
    P. Bruno and C. Chappert, Phys. Rev. Lett. 67, 1602 (1991).CrossRefGoogle Scholar
  5. 5.
    S. S. P. Parkin, R. Bhadra, and K. P. Roche, Phys. Rev. Lett. 66, 2152 (1991).CrossRefGoogle Scholar
  6. 6.
    P. Bruno, Phys. Rev. B 52, 411 (1995).CrossRefGoogle Scholar
  7. 7.
    P. Carcia, A. Meinhaldt, and A. Suna, Appl. Phys. Lett. 47, 178 (1985).CrossRefGoogle Scholar
  8. 8.
    Z. Q. Qiu, J. Pearson, and S. D. Bader, Phys. Rev. Lett. 70, 1006 (1993).CrossRefGoogle Scholar
  9. 9.
    A. Berger and H. Hopster, Phys. Rev. Lett. 76, 519 (1996).CrossRefGoogle Scholar
  10. 10.
    M. N. Baibich, J. M. Broto, A. Fert, Nguyen Van Dau, F. Petro., P. Etienne, G. Creuzet, A. Friederich, and J. Chazelas, Phys. Rev. Lett. 61, 2472 (1988).CrossRefGoogle Scholar
  11. 11.
    For a review on GMR, see A. Barthelemy, A. Fert, F. Petro., “Giant Magnetoresistance in Magnetic Multilayers”, Handbook of Magnetic Materials, Vol. 12, Edited by K. Buschow, 1999, Elsevier Science.Google Scholar
  12. 12.
    P. Bruno in “Synchrotron Radiation and Magnetism” edited by E. Beaurepaire, B. Carrière, and J.-P. Kappler, Les Editions de Physique, Les Ulis (1997).Google Scholar
  13. 13.
    W. Geerts, Y. Suzuki, T. Katayama, K. Tanaka, K. Ando, and S. Yoshida, Phys. Rev. B 50, 12581 (1994).CrossRefGoogle Scholar
  14. 15.
    K. Ounadjela and R. L. Stamps, “Mesoscopic Magnetism in Metals” in the Handbook of Nanostructured Materials and Nanotechnology, Vol. 2: Spectroscopy and Theory, p. 429, Editor Hari Singh Nalwa, Academic Press (1999).CrossRefGoogle Scholar
  15. 16.
    M. A. Kastner, Rev. Mod. Phys., 64, 849 (1992)CrossRefGoogle Scholar
  16. 17.
    M. A. Kastner, Physics Today, 24(1993).Google Scholar
  17. 19.
    M. Johnson, “Magnetoelectronic memories last and last...”, IEEE Spectrum, 33, (February 2000).Google Scholar
  18. 20.
    J. Zhu and G. A. Prinz, “VMRAM memory holds both promise and challenge”, Data Storage, 40, (September 2000).Google Scholar
  19. 21.
    G.A. Prinz and K. Hathaway, “Magnetoelectronics”, Physics Today, Vol. 48, 24 (1995).CrossRefGoogle Scholar
  20. 22.
    G. A. Gibson and S. Schultz, J. Appl. Phys. 73, 4516 (1993).CrossRefGoogle Scholar
  21. 23.
    A. D. Kent, S. van Molnar, S. Gider, D. D. Awschalom, J. Appl. Phys. 76, 6656 (1994).CrossRefGoogle Scholar
  22. 24.
    S. Manalis, K. Babcock, J. Massie, V. Elings, M. Dugas, Appl. Phys. Lett. 66, 2585 (1995).CrossRefGoogle Scholar
  23. 25.
    S. Okazaki, “Lithography for VLSI”, Proc. SPIE 2440 (1995).Google Scholar
  24. 26.
    D. L. Spears and H. I. Smith, Solid State Technol. 12, 21 (1972).Google Scholar
  25. 27.
    G. Simon, A. M. Haghiri-Gosnet, J. Bourneix, D. Decanini, Y. Chen, F. Rousseaux, H. Launois, and B. Vidal, J. Vac. Sci. Technol. B 15, 2489 (1997).CrossRefGoogle Scholar
  26. 28.
    For a review on different lithography techniques see: Y. Chen and A. Pepin, “Nanofabrication: Conventional and non-conventional methods”, Electrophoresis, to appear in January 2001.Google Scholar
  27. 29.
    M. Hehn, K. Ounadjela, J.-P. Bucher, F. Rousseaux, D. Decanini, B. Bartenlian, and C. Chappert, Science 272, 1782 (1996).CrossRefGoogle Scholar
  28. 30.
    S. Chou, IEEE Trans. Mag., 85, 664 (1997).Google Scholar
  29. 31.
    K. Hong and N. Giordano, J. Phys.: Condens. Matter 10, L401 (1998).CrossRefGoogle Scholar
  30. 32.
    U. Ruediger, J. Yu, S. Zhang, A. Kent, and S. S. P. Parkin, Phys. Rev. Lett. 80, 5639 (1998).CrossRefGoogle Scholar
  31. 33.
    U. Ebels, A. Radulescu, Y. Henry, L. Piraux, and K. Ounadjela, Phys. Rev. Lett. 84, 983(2000).CrossRefGoogle Scholar
  32. 34.
    M. Viret, Y. Samson, P. Warin, A. Marty, F. Ott, E. Sondergard, O. Klein, and C. Fermon, Phys. Rev. Lett. 85, 3962 (2000).CrossRefGoogle Scholar
  33. 35.
    W. Wernsdorfer, K. Hasselbach, A. Suplice, A. Benoit, J.-E. Wergrowe, L. Thomas, B. Barbara, and D. Mailly, Phys. Rev. B 53, 3341 (1996).CrossRefGoogle Scholar
  34. 36.
    W. Wernsdorfer, B. Doudin, D. Mailly, K. Hasselbach, A. Benoit, J. Meier, J.-Ph. Ansermet, and B. Barbara, Phys. Rev. Lett. 77, 1873(1996).CrossRefGoogle Scholar
  35. 37.
    W. Wernsdorfer, K. Hasselbach, B. Barbara, L. Thomas, D. Mailly, and G. Suran, J. Magn. Magn. Mater. 145, 33–39 (1995).CrossRefGoogle Scholar
  36. 38.
    K. Ounadjela, M. Hehn and R. Ferré, “Domain confinement in mesoscopic eptitaxial cobalt patches”, in “Magnetic hysteresis in novel magnetic materials”, edited by G. Hadjipanayis, Kluwer Academic Publishers, 485 (1997).Google Scholar
  37. 39.
    A. Hubert and R. Schäfer, “Magnetic domains”, Springer, Berlin, (1998).Google Scholar
  38. 40.
    R. D. Gomez, T. V. Luu, A. O. Pak, K. J. Kirk, and J. N. Chapman, J. Appl. Phys. 85, 6163(1999).CrossRefGoogle Scholar
  39. 41.
    I. L. Prejbeanu, L. D. Buda, U. Ebels, M. Viret, C. Fermon, and K. Ounadjela, IEEE Trans. Magn., June (2001).Google Scholar
  40. 42.
    F. Rousseaux, D. Decanini, F. Carcenac, E. Cambril, M.F. Ravet, C. Chappert, N. Bardou, B. Bartenlian, and P. Veillet, J. Vac. Sci. Technol. B 13, 2787 (1995).CrossRefGoogle Scholar
  41. 43.
    L. Piraux, S. Dubois, E. Ferain, R. Legras, K. Ounadjela, J.-M. George, J.-L. Maurice, and A. Fert, J. Magn. Magn. Mater. 165, 352 (1997).Google Scholar
  42. 44.
    E. Ferain and R. Legras, Nucl. Instrum. Methods B 131, 97 (1997) and references therein.CrossRefGoogle Scholar
  43. 45.
    J.-L. Maurice, D. Imhoff, P. Etienne, O. Durand, S. Dubois, L. Piraux, J.-M. George, P. Galtier, and A. Fert, J. Magn. Magn. Mater. 184, 1 (1998).Google Scholar
  44. 46.
    K. L. Babcock, V. B. Elings, J. Shi, D. D. Awschalom, and M. Dugas, Appl. Phys. Lett. 69, 705 (1996).CrossRefGoogle Scholar
  45. 47.
    R. Wiesendanger “Scanning Probe microscopy and spectroscopy: methods and applications”, Cambridge University Press, 1995.Google Scholar
  46. 48.
    J. J. Saentz, N. Garcia, P. Grutter, E. Meyer, H. Heizelmann, R. Wiesendanger, L. Rosenthaler, H. R. Hidber, and H. J. Güntherodt, J. Vac. Sci. Technol. A6, 279 (1988).Google Scholar
  47. 49.
    Y. Martin, C. C. Williams, and H.K. Wickramasinghe, J. Appl. Phys. 61, 4723 (1987).CrossRefGoogle Scholar
  48. 50.
    D. Rugar, H. J. Mamin, P. Guethner, S. E. Lambert, J. E. Stern, J. McFadyen, and T. Yogi, J. Appl. Phys 68, 1169 (1990)CrossRefGoogle Scholar
  49. 51.
    H. J. Hug, B. Stiefel, P. J. A. van Schendel, A. Moser, R. Hofer, S. Martin, H.-J. Güntherodt, S. Porthun, L. Abelmann, J. C. Lodder, G. Bochi, and R. C. O’Handley, J. Appl. Phys. 83, 5609 (1998).CrossRefGoogle Scholar
  50. 52.
    R. Proksch, G. D. Skidmore, E. D. Dahlberg, S. Foss, J. J. Schmidt, C. Merton, B. Walsh, and M. Dugas, Appl. Phys. Lett. 69, 2599 (1996).CrossRefGoogle Scholar
  51. 53.
    S. Porthun, L. Abelmann, C. Lodder, J. Magn. Magn. Mater. 182, 238 (1998).CrossRefGoogle Scholar
  52. 55.
    L. D. Landau and E. Lifshitz, Phys. Z. Sowjetunion 8, 153(1935).Google Scholar
  53. 56.
    T. J. Gilbert, Phys. Rev. 100, 1243(1955).Google Scholar
  54. 57.
    A. J. Newell, W. Williams, and D. J. Dunlop, J. Geophys. Res. 98, 9551 (1993).Google Scholar
  55. 58.
    Y. Nakatani, N. Uesaka, and N. Hayashi, J. Appl. Phys. 28, 2485 (1989).CrossRefGoogle Scholar
  56. 59.
    P. Weiss, J. de Phys. Rad. 6, 661 (1907).Google Scholar
  57. 60.
    For a review on magnetic bubbles in oxides see: A. P. Malozemo. and J. C. Slonczewski, “Magnetic Domain Walls in Bubble Materials”, Academic Press, New York, (1979).Google Scholar
  58. 61.
    C. Kittel, Phys. Rev. 70, 965 (1946).CrossRefGoogle Scholar
  59. 62.
    C. Kooy and U. Enz, Philips Res. Rep. 15, 7 (1960).Google Scholar
  60. 63.
    S. Chikazumi, “Physics of Ferromagnetism”, chapter 17, Oxford University Press, 1997.Google Scholar
  61. 64.
    D. Craik, “Magnetism principles and applications”, chapter 4.1, Wiley 1995.Google Scholar
  62. 65.
    A. H. Bobeck and E. Della Torre, “Magnetic Bubbles”, North Holland, Amsterdam (1975).Google Scholar
  63. 66.
    A. H. Eschenfelder, “Magnetic Bubble Technology”, Springer, Berlin, Heidelberg, New York (1981).Google Scholar
  64. 67.
    M. Hehn, S. Padovani, K. Ounadjela, and J.-P. Bucher, Phys. Rev. B. 54, 3428 (1996).CrossRefGoogle Scholar
  65. 68.
    U. Ebels, L. Buda, P. E. Wigen, and K. Ounadjela, Chapter 6 in “Spin Dynamics in Confined Magnetic Structures”, edited by B. Hillebrands and K. Ounadjela, Springer, Spring 2001.Google Scholar
  66. 69.
    V. Gehanno, A. Marty, B. Gilles, and Y. Samson, Phys. Rev. B 55, 12552 (1997); V. Gehanno, Y. Samson, A. Marty, B. Gilles, and A. Chamberod, J. Magn. Magn. Mater. 172, 26 (1997).CrossRefGoogle Scholar
  67. 70.
    A. Asenjo, J. M. Garcia, D. Garcia, A. Hernando, M. Vazquez, P. A. Caro, D. Ravelosona, A. Cebollada, and F. Briones, J. Magn. Magn. Mater. 196, 23(1999).CrossRefGoogle Scholar
  68. 71.
    L. Folks, U. Ebels, R. Sooryakumar, D. Weller, and R. F. C. Farrow, J. Magn. Soc. Jpn. 23 No S1, 85 (1999).Google Scholar
  69. 72.
    R. Allenspach and M. Stampanoni, in “Magnetic Surfaces, Thin Films and Multilayers”, edited by S. S. P. Parkin et al., MRS Symposia Proceedings no. 231, p.17, Material Research Society Pittsburg (1992).Google Scholar
  70. 73.
    This is illustrated for the case of eptiaxial Fe films in: E. Gu, E. Ahmad, S. J. Gray, C. Daboo, J. A. C. Bland, L. M. Brown, M. Rührig, A. J. McGibbon, and J. N. Chapman, Phys. Rev. Lett. 78, 1158 (1997).CrossRefGoogle Scholar
  71. 74.
    M. Demand, M. Hehn, K. Ounadjela, R. L. Stamps, E. Cambril, A. Cornette, and F. Rousseaux, J. Appl. Phys. 87, 5111 (2000).CrossRefGoogle Scholar
  72. 75.
    T. Shinjo, T. Okuna, R. Hassdorf, K. Shigeto, and T. Ono, Science 289, 930 (2000).CrossRefGoogle Scholar
  73. 76.
    M. Schneider, H. Hoffmann, and J. Zweck, Appl. Phys. Lett. 77, 2909 (2000).CrossRefGoogle Scholar
  74. 77.
    R. P. Cowburn, J. Phys. D 33, R1 (2000).CrossRefGoogle Scholar
  75. 78.
    W. F. Brown, Jr., J. Appl. Phys. 39, 993(1968).CrossRefGoogle Scholar
  76. 79.
    M. Hehn, PhD thesis, University Louis Pasteur, Strasbourg (1997).Google Scholar
  77. 80.
    M. Hehn, R. Ferré, K. Ounadjela, J.-P. Bucher, and F. Rousseaux, J. Magn. Magn. Mater. 165, 5 (1997).CrossRefGoogle Scholar
  78. 81.
    R. Ferré, M. Hehn, and K. Ounadjela, J. Magn. Magn. Mater. 165, 9 (1997).CrossRefGoogle Scholar
  79. 82.
    R. P. Cowburn, A. O. Adeyeye, and M. E. Welland, Phys. Rev. Lett. 81, 5414 (1998).CrossRefGoogle Scholar
  80. 84.
    R. P. Cowburn, D. K. Koltsov, A. O. Adeyeye, M. E. Welland, and D. M. Tricker, Phys. Rev. Lett. 83, 1042 (1999).CrossRefGoogle Scholar
  81. 85.
    M. Demand, PhD thesis, University Louis Pasteur, Strasbourg (1998).Google Scholar
  82. 86.
    J. Raabe, R. Pulwey, R. Sattler, T. Zweck, and D. Weiss, J. Appl. Phys. 88, 4437 (2000).CrossRefGoogle Scholar
  83. 87.
    T. Pokhil, D. Song, and J. Nowak, J. Appl. Phys. 87, 6319 (2000).CrossRefGoogle Scholar
  84. 88.
    A. Fernadez and C. J. Cerjan, J. Appl. Phys. 87, 1395 (2000).CrossRefGoogle Scholar
  85. 89.
    A. Fernandez, M. R. Gibbsons, M. A. Wall, and C. J. Cerjan, J. Magn. Magn. Mater. 190, 71 (1998).CrossRefGoogle Scholar
  86. 90.
    E. Girgis, J. Schelten, J. Shi, J. Janeski, S. Tehrani, and H. Goronkin, Appl. Phys. Lett. 76, 3780 (2000).CrossRefGoogle Scholar
  87. 91.
    M. Kleiber, F. Kümmerlein, M. Löhndorf, A. Wadas, D. Weiss, and R. Wiesendanger, Phys. Rev. B 58, 5563(1998).CrossRefGoogle Scholar
  88. 92.
    E. C. Stoner and E. P. Wohlfarth, Philos. Trans. London, Ser. A 240, 599 (1948); L. Néel, Acad. Sci. Paris, 224, 1550 (1947).CrossRefGoogle Scholar
  89. 93.
    These experiments have been performed by our group in collaboration with M. Natali and Y. Chen, from L2M Bagneux.Google Scholar
  90. 94.
    L. D. Buda, I. L. Prejbeanu, M. Demand, U. Ebels, and K. Ounadjela, IEEE Trans. Magn., June (2001).Google Scholar
  91. 95.
    J. Miltat, “Applied Magnetism”, NATO ASI Series, edited by R. Gerber, C. D. Wright, G. Asti, Kluwer Dordrecht, 221 (1994).Google Scholar
  92. 96.
    M. E. Schabes and H. N. Bertram, J. Appl. Phys. 64, 1347 (1988).CrossRefGoogle Scholar
  93. 97.
    R. P. Cowburn and M. E. Welland, Phys. Rev. B 58, 9217 (1998).CrossRefGoogle Scholar
  94. 98.
    Y. Zheng and J. Zhu, J. Appl. Phys. 81, 5471 (1997).CrossRefGoogle Scholar
  95. 99.
    K. J. Kirk, J. N. Chapman, and C. D. W. Wilkinson, Appl. Phys. Lett. 71, 539 (1997).CrossRefGoogle Scholar
  96. 100.
    J. Shi et al., IEEE Trans. Magn. 34, 997 (1998).CrossRefGoogle Scholar
  97. 101.
    J. Gadbois, J.-G. Zhu, and W. Vavra, A. Hurst, IEEE Trans. Magn. 34, 1066 (1998).CrossRefGoogle Scholar
  98. 102.
    M. Rührig, B. Khamesehpour, K. J. Kirk, J. N. Chapman, P. Aitchison, S. McVitie, and C. D. W. Wilkinson, IEEE Trans. Magn. 32, 4452 (1996).CrossRefGoogle Scholar
  99. 103.
    J.G. Zhu, Y. Zheng, and G. A. Prinz, J. Appl. Phys. 87, 6668 (2000).CrossRefGoogle Scholar
  100. 104.
    S. P. Li, A. Peyrade, M. Natali, A. Lebib, Y. Chen, U. Ebels, L.D. Buda, and K. Ounadjela, Phys. Rev. Lett. 86, (2001).Google Scholar
  101. 105.
    M. Ledermann, R. O’Barr, and S. Schultz, IEEE Trasn. Magn. 31 3793 (1997); R. O’Barr and S. Schultz, J. Appl. Phys. 81, 5458 (1997).CrossRefGoogle Scholar
  102. 106.
    R. Ferre, K. Ounadjela, J. M. George, L. Piraux, and S. Dubois, Phys. Rev. B 56, 14066 (1997).CrossRefGoogle Scholar
  103. 107.
    J.-E. Wegrowe, D. Kelly, A. Franck, S. E. Gilbert, and J.-Ph. Ansermet, Phys. Rev. Lett. 82, 3681 (1999).CrossRefGoogle Scholar
  104. 108.
    I. L. Prejbeanu, L. D. Buda, U. Ebels, and K. Ounadjela, Appl. Phys. Lett. 77, 3066 (2000).CrossRefGoogle Scholar
  105. 109.
    A. Hubert, IEEE Trans. Magn. 21, 1604 (1985).CrossRefGoogle Scholar
  106. 110.
    A. Aharoni, “Introduction to the theory of ferromagnetism”, Clarendon Press, Oxford, (1996).Google Scholar
  107. 111.
    D. Hinzke and U. Nowak, J. Magn. Magn. Mater. 221, 365 (2000).CrossRefGoogle Scholar
  108. 112.
    R. C. O’Handley, “Modern Magnetic Materials, Principles and Applications”, Chapter 9.2, Wiley, New York, (2000).Google Scholar
  109. 113.
    J. F. Gregg, W. Allen, K. Ounadjela, M. Viret, M. Hehn, S. M. Thomson, and J. M. D. Coey, Phys. Rev. Lett 77, 1580 (1996)CrossRefGoogle Scholar
  110. 114.
    M. Viret, D. Vignoles, D. Cole, J. M. D. Coey, W. Allen, D. S. Daniel, and J. F. Gregg, Phys. Rev. B 53, 8464 (1996).CrossRefGoogle Scholar
  111. 115.
    D. Ravelosona, A. Cebollada, F. Briones, C. Diaz-Paniagua, M. A. Hidalgo, and F. Batallan, Phys. Rev. B, 59, 4322 (1999).CrossRefGoogle Scholar
  112. 116.
    A. D. Kent, U. Ruediger, J. Yu, L. Thomas, and S. S. P. Parkin, J. Appl. Phys. 85, 5243(1999).CrossRefGoogle Scholar
  113. 117.
    M. Viret, Y. Samson, P. Warin, A. Marty, F. Ott, E. Sondergard, O. Klein, and C. Fermon, Phys. Rev. Lett. 85, 3962 (2000).CrossRefGoogle Scholar
  114. 118.
    P. M. Levy and S. Zhang, Phys. Rev. Lett. 79, 5110 (1997).CrossRefGoogle Scholar
  115. 119.
    T. R. McGuire and R. I. Potter, IEEE Trans. Magn. 11, 1018 (1975).CrossRefGoogle Scholar
  116. 120.
    F. C. Schwerer and J. Silcox, Phys. Rev. Lett 20, 101 (1968).CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2001

Authors and Affiliations

  • K. Ounadjela
    • 1
    • 2
  • I. L. Prejbeanu
    • 1
  • L. D. Buda
    • 1
  • U. Ebels
    • 1
  • M. Hehn
    • 3
  1. 1.Institut de Physique et Chimie des Matériaux de StrasbourgUnité Mixte CNRS-ULP-ECPMStrasbourg CedexFrance
  2. 2.VEECO instrumentsFremontUSA
  3. 3.LPMUniversité Henri Poincaré BP 239Vandoeuvre lès NancyFrance

Personalised recommendations