Advertisement

Circuit Theory for the Electrically Declined

  • J. F. Gregg
  • M. J. Thornton
Chapter
  • 1.5k Downloads
Part of the Lecture Notes in Physics book series (LNP, volume 569)

Abstract

Such is the sophistication of many contemporary University Physics Courses that their followers are at ease with the finer details of the Dirac equation and have no difficulty in thinking in a many-dimensioned Hilbert-space: however they are often less confident when faced with knowing which end of a soldering iron gets hot. Spin Electronics is above all a practical science which ultimately promises to implement a new and revolutionary technology in a form which will ultimately impact everyday existence. Card-carrying theoretical physicists doubtless have their part to play in this new and exciting field, but for the rapid and successful development of this science, the importance of practical knowledge and experimental dexterity is paramount. Those who would claim proficiency as Spin Electronicians must, above all, be capable of the simple, basic skills with which every TV repair engineer is acquainted. To those devotees of Spin Electronics whose degree courses have left you electrically deprived, this chapter is dedicated to you. Evidently, in the few pages available, only the surface of this topic may be scratched, but at least the basics can be laid, topics of major confusion like transistors and transformers can be treated and signposts pointed to further study.

Keywords

Equivalent Circuit Circuit Theory Potential Divider Source Impedance Open Loop Gain 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Copyright information

© Springer-Verlag Berlin Heidelberg 2001

Authors and Affiliations

  • J. F. Gregg
    • 1
  • M. J. Thornton
    • 1
  1. 1.Clarendon LaboratoryOxford UniversityOxfordUK

Personalised recommendations