Plant Cells pp 27-62 | Cite as

Gas Concentration Effects on Secondary Metabolite Production by Plant Cell Cultures

  • J. C. Linden
  • J. R. Haigh
  • N. Mirjalili
  • M. Phisaphalong
Part of the Advances in Biochemical Engineering/Biotechnology book series (ABE, volume 72)


One aspect of secondary metabolite production that has been studied relatively infrequently is the effect of gaseous compounds on plant cell behavior. The most influential gases are believed to be oxygen, carbon dioxide and other volatile hormones such as ethylene and methyl jasmonate. Organic compounds of interest include the promising antimalarial artemisinin known as “qing hao su” in China where it has been a folk remedy for centuries) that is produced by Artemisia annua (sweet wormwood) and taxanes used for anticancer therapy that are produced by species of Taxus (yew). The suspension cultures of both species were grown under a variety of dissolved gas conditions in stoppered culture flasks and under conditions of continuous headspace flushing with known gas mixtures. An analysis is presented to show the culture conditions are such that equilibrium between the culture liquid and gas head-space is assured. The growth rate of the cells and their production rates of artemisinin and paclitaxel were determined. These and other parameters are correlated as functions of the gas concentrations. Interdependence of ethylene and methyl jasmonate is also explored with respect to regulation of secondary metabolite formation.


Plant cell culture Secondary metabolites Oxygen Carbon dioxide Ethylene Methyl jasmonate Artemisinin Paclitaxel Engineering parameters 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Staba EJ (ed) (1980) Plant tissue culture as a source of biochemicals. CRC Press, Boca Raton, FloridaGoogle Scholar
  2. 2.
    Buitelaar RM, Tramper J (1992) J Biotechnol 23:111CrossRefGoogle Scholar
  3. 3.
    Curtin ME (1983) Bio/technology 1:649CrossRefGoogle Scholar
  4. 4.
    Dörnenburg H, Knorr D (1995) Enzyme Microb Technol 17:674CrossRefGoogle Scholar
  5. 5.
    Sahai O, Knuth M (1985) Biotechnol Prog 1:1CrossRefGoogle Scholar
  6. 6.
    Taticek RA, Moo-Young M, Legge RL (1991) Plant Cell Tissue Organ Culture 24:139CrossRefGoogle Scholar
  7. 7.
    Walton NJ (1992) Chem Br 28:525Google Scholar
  8. 8.
    Morris P, Scragg AH, Stafford A, Fowler MW (eds) (1986) Secondary metabolism in plant cell cultures. Cambridge University Press, CambridgeGoogle Scholar
  9. 9.
    Payne GF, Bringi V, Prince CL, Shuler ML (1992) Plant cell and tissue culture in liquid systems. Hanser Publishers, MunichGoogle Scholar
  10. 10.
    Routian JB, Nickell LG (1956) US Patent 2 747 334Google Scholar
  11. 11.
    Bringi V, Kadkade PG, Prince CL, Schubmehl BF, Kane EJ, Roach B (1995) US Patent 5 407 816Google Scholar
  12. 12.
    Sanrou T, Mayumi Y, Kazuki I, Tae O, Masahiro A, Minoru K (1998) JP Patent 10 042 888AGoogle Scholar
  13. 13.
    Choi HK, Adams TL, Stahlhut RW, Kim SI, Yun JH, Song BK, Kim JH, Song JS, Hong SS, Lee HS (1999) US Patent 5 871 979Google Scholar
  14. 14.
    Flores HE, Vivanco JM, Loyola-Vargas VM (1999) Trends Plant Sci 4:220CrossRefGoogle Scholar
  15. 15.
    Fett Neto AG (ed) (1996) Plant cell culture production of secondary metabolites. CRC Press, Boca Raton, p 139Google Scholar
  16. 16.
    Nakagawa K, Fukui H, Tabata M (1986) Plant Cell Reports 5:69CrossRefGoogle Scholar
  17. 17.
    Obaata-Sasamoto H, Komamine A (1982) Suppression mechanism of DOPA accumulation in Stizolobium callus. In: Plant tissue culture 1982. Japanese Association for Plant Tissue Culture, Tokyo, p 345Google Scholar
  18. 18.
    Hashimoto T, Yamada Y (1986) Plant Physiol 81:619CrossRefGoogle Scholar
  19. 19.
    Whitaker RJ, Hashimoto T (1986) Production of secondary metabolites. In Evans DA, Sharp WR, Ammirato PV (eds) Handbook of plant tissue culture, vol 4. Macmillan Pub Co, New York, p 264Google Scholar
  20. 20.
    Deno H, Suga C, Morimoto T, Fujita Y (1987) Plant Cell Rep 6:197CrossRefGoogle Scholar
  21. 21.
    Constabel F (1990) Planta Med 56:421CrossRefGoogle Scholar
  22. 22.
    Gaspar T, Kevers C, Penel C, Greppin H, Reid DM, Thorpe TA (1996) In Vitro Cell Devel Biol Plant 32:272CrossRefGoogle Scholar
  23. 23.
    Roberts SC, Shuler ML (1997) Curr Opin Biotechnol 8:154CrossRefGoogle Scholar
  24. 24.
    Crueger W, Crueger A (1984) Biotechnology: a textbook of industrial microbiology. Science Tech, Madison, p 206Google Scholar
  25. 25.
    Haigh JR, Linden JC (1989) Plant Cell Rep 8:475CrossRefGoogle Scholar
  26. 26.
    Haigh JR, Linden JC (1991) Gen Eng Biotechnol 11:23Google Scholar
  27. 27.
    Mirjalili N, Linden JC (1996) Biotechnol Prog 12:110CrossRefGoogle Scholar
  28. 28.
    Mirjalili N, Linden JC (1995) Biotechnol Bioeng 48:123CrossRefGoogle Scholar
  29. 29.
    Phisalaphong M, Linden JC (1999) Ethylene and methyl jasmonate interaction and binding models for elicited biosynthetic steps of paclitaxel in suspension cultures of Taxus canadensis. In Kanellis AK, Chang C, Klee H, Bleecker AB, Pech JC, Grierson D (eds.) Biology and biotechnology of the plant hormone ethylene. Kluwer Academic Publishers, Dordrecht, p 85Google Scholar
  30. 30.
    Phisalaphong M, Linden JC (1999) Biotechnol Prog 15:1072CrossRefGoogle Scholar
  31. 31.
    Hulst AC, Tramper J, Brodelius P, Eijkenboom LJC, Luyben KCAM (1985) J Chem Tech Biotechnol 35B: 198Google Scholar
  32. 32.
    Hallsby GA (1984) MS thesis, Cornell UniversityGoogle Scholar
  33. 33.
    Hallsby GA (1986) PhD dissertation, Cornell UniversityGoogle Scholar
  34. 34.
    LaRue TAG, Gamborg OL (1971) Plant Physiol 48:394CrossRefGoogle Scholar
  35. 35.
    Thomas DDS, Murashige T (1979) In Vitro 15:654CrossRefGoogle Scholar
  36. 36.
    Zobel RW (1987) Environ Exp Bot 27:223CrossRefGoogle Scholar
  37. 37.
    Fujiwara K, Kozai T, Watanabe I (1987) J Agr Met 43:21Google Scholar
  38. 38.
    Salisbury FB, Ross CW (1992) Plant Physiology, 4th edn. Wadsworth Publishing Co., Belmont, CAGoogle Scholar
  39. 39.
    Beyer EM, Morgan PW, Yang SF (1984) Ethylene. In: Wilkins MB (ed) Advanced plant physiology. Pitman Press, Bath, UKGoogle Scholar
  40. 40.
    Lieberman M, Wang SY, Owens LD (1979) Plant Physiol 63:811CrossRefGoogle Scholar
  41. 41.
    Shuler ML, Sahai OP, Hallsby GA (1983) Ann NY Acad Sci 413:373CrossRefGoogle Scholar
  42. 42.
    Facchini PJ, DiCosmo F (1991) Biotechnol Bioeng 37:397CrossRefGoogle Scholar
  43. 43.
    Hsiao TY, Bacani FT, Carvalho EB, Curtis WR (1999) Biotechnol Prog 15:114CrossRefGoogle Scholar
  44. 44.
    Rijhwani SK, Shanks JV (1998) Biotechnol Prog 14:442CrossRefGoogle Scholar
  45. 45.
    Williams GRC, Doran PM (2000) Biotechnol Prog 16:391CrossRefGoogle Scholar
  46. 46.
    McKelvey SA, Gehrig JA, Hollar KA, Curtis WR (1993) Biotechnol Prog 9:317CrossRefGoogle Scholar
  47. 47.
    Perry RH, Chilton CH (1973) Chemical engineers handbook, 5th edn. McGraw-Hill, New York, pp 3–98Google Scholar
  48. 48.
    Weast RC (1985) CRC handbook of chemistry and physics, 65th edn. CRC Press Inc, Boca Raton, FL, p F–115Google Scholar
  49. 49.
    Hill CG (1977) An introduction to chemical engineering kinetics and reactor design, John Wiley & Sons, New York, p 451Google Scholar
  50. 50.
    Kobayashi Y, Fukui H, Tabata M (1989) Plant Cell Rep 8:255CrossRefGoogle Scholar
  51. 51.
    Tate JL, Payne GF (1991) Plant Cell Rep 10:22CrossRefGoogle Scholar
  52. 52.
    Su WW, Humphrey AE (1991) Biotechnol Lett 13:889CrossRefGoogle Scholar
  53. 53.
    Smith JM, Davison SW, Payne GF (1990) Biotechnol Bioeng 35:1088CrossRefGoogle Scholar
  54. 54.
    Fowler MW (1983) Commercial applications and economic aspects of mass plant-cell culture. In: Mantel SH, Smith H (eds) Plant biotechnology. Cambridge University Press, Cambridge, UK, p 3Google Scholar
  55. 55.
    Maurel B, Pareilleux A (1985) Biotechnol Lett 7:313CrossRefGoogle Scholar
  56. 56.
    Stuhlfauth T, Klug K, Fock HP (1987) Phytochemistry 26:2735CrossRefGoogle Scholar
  57. 57.
    Kim DI, Pedersen H, Chin CK (1991) Biotechnol Bioeng 38:331CrossRefGoogle Scholar
  58. 58.
    Smart NJ, Fowler MW (1981) Biotechnol Lett 3:171CrossRefGoogle Scholar
  59. 59.
    Abeles FB (1973) Ethylene in plant biology. Academic Press, New York, p 228Google Scholar
  60. 60.
    Freytag AH, Linden JC (1975) La Sucrerie Belge 94:429Google Scholar
  61. 61.
    Bagratishvili DG, Zaprometov MN (1988) Soobshch Akad Nauk Gruz SSR 131:385Google Scholar
  62. 62.
    Songstad KL, Giles J, Park D, Novakovski D, Epp L, Friasen L, Roewer I (1989) Plant Cell Rep 8:463CrossRefGoogle Scholar
  63. 63.
    Kobayashi Y, Hara M, Fukui H, Tabata M (1991) Phytochemistry 30:3605CrossRefGoogle Scholar
  64. 64.
    Kim DI, Pedersen H, Chin CK (1991) J Biotechnol 21:201CrossRefGoogle Scholar
  65. 65.
    Cho GH, Kim DI, Pedersen H, Chin CK (1988) Biotechnol Prog 4:184CrossRefGoogle Scholar
  66. 66.
    Luo XD, Shen CC (1987) Med Res Rev 7:29CrossRefGoogle Scholar
  67. 67.
    Klayman DL (1985) Science 228:1049CrossRefGoogle Scholar
  68. 68.
    Park JM, Hu WS, Staba EJ (1989) Biotechnol Bioeng 34:1209CrossRefGoogle Scholar
  69. 69.
    Tawfiq NK, Anderson LA, Roberts MF, Phillipson MF, Bray DH, Warhurst DC (1989) Plant Cell Rep 8:425CrossRefGoogle Scholar
  70. 70.
    Martinez BC, Staba EJ (1988) Adv Cell Culture 6:69Google Scholar
  71. 71.
    Bailey JE, Ollis DF (1986) Biochemical engineering fundamentals, 2nd edn. McGraw-Hill Book Co, New York, p285Google Scholar
  72. 72.
    Yegneswaran PK, Gray MR, Thompson BG (1990) Biotechnol Bioeng 36:92CrossRefGoogle Scholar
  73. 73.
    O’Connor DJ, Dobbins W (1966) J Sanit Div Proc ASCE 82:SA6Google Scholar
  74. 74.
    Haigh JR (1993) PhD dissertation, Colorado State UniversityGoogle Scholar
  75. 75.
    Barmore CR, Wheaton TA (1978) HortScience 13:169Google Scholar
  76. 76.
    Choi MS, Kwak SS, Liu JR, Park YG, Lee MK, An NH (1995) Planta Med 61:264CrossRefGoogle Scholar
  77. 77.
    Gan FY, Peng LP, Zheng GZ (1996) Acta Bot Yunn 18:451Google Scholar
  78. 78.
    Griffin J, Hook I (1996) Planta Med 62:370CrossRefGoogle Scholar
  79. 79.
    Hirasuna TJ, Pestchanker LJ, Srinivasan V, Shuler ML (1996) Plant Cell Tissue Organ Culture 44:95CrossRefGoogle Scholar
  80. 80.
    Hoffman AM, Voelker CCJ, Franzen AT, Shiotani KS, Sandhu JS (1996) Phytochemistry 43:95CrossRefGoogle Scholar
  81. 81.
    Kitagawa I, Mahmud T, Kobayashi M, Roemantyo J, Shibuya H (1995) Chem Pharm Bull 43:365Google Scholar
  82. 82.
    Liu DI, Zhang GY, Wang X, Hu ZB (1997) J Plant Resour Environ 6:48Google Scholar
  83. 83.
    Xiang W, Zhang HJ, Ruan DC, Sun HD (1997) J Plant Resour Environ 6:56Google Scholar
  84. 84.
    Zhiri A, Jaziri M, Guo Y, Vanhaelen Fastre R, Vanhaelen M, Homes J, Yoshimatsu K, Shimomura K (1995) Biol Chem Hoppe-Seyler 376:586Google Scholar
  85. 85.
    Mei X, Lu M, Yu L, Hu D (1996) Med Chem Res 6:256Google Scholar
  86. 86.
    Chattopadhyay SK, Kulshrestha M, Saha GC, Sharma RP, Jain SP, Kumar S (1997) J Med Arom Plant Sci 19:17Google Scholar
  87. 87.
    Ketchum REB, Gibson DM, Croteau R, Shuler ML (1999) Biotechnol Bioeng 62:97CrossRefGoogle Scholar
  88. 88.
    Yukimune Y, Tabata H, Higashi Y, Hara Y (1996) Nature Biotechnol 14:1129CrossRefGoogle Scholar
  89. 89.
    Farmer EE (1994) Plant Mol Biol 26:1423CrossRefGoogle Scholar
  90. 90.
    Dammann C, Rojo E, Sanchez-Serrano JJ (1997) Plant J 11:773CrossRefGoogle Scholar
  91. 91.
    Blechert S, Brodschelm W, Hoelder S, Kammerer L, Kutchan TM, Mueller MJ, Xia ZQ, Zenk MH (1995) Proc Nat Acad Sci USA 92:4099CrossRefGoogle Scholar
  92. 92.
    Gundlach H, Mueller MJ, Kutchan TM, Zenk MH (1992) Proc Nat Acad Sci USA 89:2389CrossRefGoogle Scholar
  93. 93.
    Kauss H, Krause K, Jeblick W (1992) Biochem Biophys Res Comm 189:304CrossRefGoogle Scholar
  94. 94.
    Yazaki K, Takeda K, Tabata M (1997) Plant Cell Physiol 38:776Google Scholar
  95. 95.
    Tamari G, Borochov A, Atzorn R, Weiss D (1995) Physiol Plant 94:45CrossRefGoogle Scholar
  96. 96.
    Kutchan TM, Dittrich H, Bracher D, Zenk MH (1991) Tetrahedron 47:5954CrossRefGoogle Scholar
  97. 97.
    Yamada A, Shibuya N, Kodama O, Akatsuka T (1993) Biosci Biotechnol Biochem 57:405CrossRefGoogle Scholar
  98. 98.
    Ito Y, Kaku H, Shibuya N (1997) Plant J 12:347CrossRefGoogle Scholar
  99. 99.
    Cote F, Hahn MG (1994) Plant Mol Biol 26:1379CrossRefGoogle Scholar
  100. 100.
    Nojiri H, Sugimori M, Yamane H, Nishimura Y, Yamada A, Shibuya N, Kodama O, Murofushi N, Omori T (1996) Plant Physiol 110:387Google Scholar
  101. 101.
    Kauss H, Jeblick W, Ziegler J, Krabler W (1994) Plant Physiol 105:89Google Scholar
  102. 102.
    Boller T, Gehri A, Mauch F, Vogeli U (1983) Planta 157:22CrossRefGoogle Scholar
  103. 103.
    Linden JC, Phisalaphong M (2000) Plant Sci 158:41CrossRefGoogle Scholar
  104. 104.
    Haigh JR (1988) MS thesis, Colorado State UniversityGoogle Scholar
  105. 105.
    Sun X (1998) MS thesis Colorado State UniversityGoogle Scholar
  106. 106.
    Mirjalili N (1997) PhD dissertation, Colorado State UniversityGoogle Scholar
  107. 107.
    Phisalaphong M (1999) PhD dissertation, Colorado State UniversityGoogle Scholar
  108. 108.
    Stanbury PF, Whitaker A (1984) Principles of fermentation technology. Pergamon Press, Oxford, p 95Google Scholar
  109. 109.
    Mizukami H, Ogawa T, Ohashi H, Ellis BE (1992) Plant Cell Rep 11:480CrossRefGoogle Scholar
  110. 110.
    Xu Y, Chang PL, Liu D, Narasimhan ML, Raghothama KG, Hasegawa PM, Bressan RA (1994) Plant Cell 6:1077CrossRefGoogle Scholar
  111. 111.
    Berry AW, Cowan DSC, Harpham NVJ, Hemsley RJ, Novikova GV, Smith AR, Hall MA (1996) Plant Growth Regul 18:135CrossRefGoogle Scholar
  112. 112.
    Brailsford RW, Voesenek CJ, Blom CWP, Smith AR, Hall MA, Jackson MB (1993) Plant Cell Environ 16:1071CrossRefGoogle Scholar
  113. 113.
    Schaller GE, Gamble RL, Randlett M, Zhao X, Qu X (2000) Ethylene receptors and the two-component paradigm. In: Walker J, Randall D (eds) Current topics in plant biochemistry, physiology and molecular biology. University of Missouri, Columbia, p 68Google Scholar
  114. 114.
    Rodriquez FI, Esch JJ, Hall AE, Binder BM, Schaller GE, Bleeker AB (1999) Science 283:996CrossRefGoogle Scholar
  115. 115.
    Clark KL, Larsen PB, Chang C (1998) Proc Nat Acad Sci USA 95:5401CrossRefGoogle Scholar
  116. 116.
    Chang C, Stewart RC (1998) Plant Physiol 117:723CrossRefGoogle Scholar
  117. 117.
    Weber H, Vick BA, Farmer EE (1997) Proc Nat Acad Sci USA 94:10473CrossRefGoogle Scholar
  118. 118.
    Fauth M, Schweizer P, Buchala A, Markst C, Riederer M, Kato T, Kauss H (1998) Plant Physiol 117:1380CrossRefGoogle Scholar
  119. 119.
    Franke R, Fry SC, Kauss H (1998) Plant Cell Rep 17:379CrossRefGoogle Scholar
  120. 120.
    Sessa G, Raz V, Savaldi S, Fluhr R (1996) Plant Cell 8:2223CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2001

Authors and Affiliations

  • J. C. Linden
    • 1
  • J. R. Haigh
    • 1
  • N. Mirjalili
    • 1
  • M. Phisaphalong
    • 1
  1. 1.Department of Chemical and Bioresource EngineeringColorado State UniversityFort CollinsUSA

Personalised recommendations