Advertisement

Plant Cells pp 63-102 | Cite as

Integrated Bioprocessing for Plant Cell Cultures

  • Jeong-Woo Choi
  • Gyu Heon Cho
  • Sang Yo Byun
  • Dong-Il Kim
Chapter
Part of the Advances in Biochemical Engineering/Biotechnology book series (ABE, volume 72)

Abstract

Plant cell suspension culture has become the focus of much attention as a tool for the production of secondary metabolites including paclitaxel, a well-known anticancer agent. Recently, it has also been regarded as one of the host systems for the production of recombinant proteins. In order to produce phytochemicals using plant cell cultures, efficient processes must be developed with adequate bioreactor design. Most of the plant secondary metabolites are toxic to cells at the high concentrations required during culture. Therefore, if the product could be removed in situ during culture, productivity might be enhanced due to the alleviation of this toxicity. In situ removal or extractive bioconversion of such products can be performed by in situ extraction with various kinds of organic solvents. In situ adsorption using polymeric resins is another possibility. Using the fact that secondary metabolites are generally hydrophobic, various integrated bioprocessing techniques can be designed not only to lower toxicity, but also to enhance productivity. In this article, in situ extraction, in situ adsorption, utilization of cyclodextrins, and the application of aqueous two-phase systems in plant cell cultures are reviewed.

Keywords

Plant cell culture In situ extraction In situ adsorption Cyclodextrin Aqueous two-phase systems 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Fett-Neto AG, DiCosmo F (1996) Production of paclitaxel and related taxoids in cell cultures of Taxus cuspidata: perspectives for industrial application. In: DiCosmo F, Misawa M (eds), Plant cell culture secondary metabolism toward industrial application. CRC Press, Boca Raton, p 139Google Scholar
  2. 2.
    Miele L (1997) Trends Biotechnol 15:45CrossRefGoogle Scholar
  3. 3.
    Kurata H, Kawai A, Seki M, Furusaki S (1994) J Ferment Bioeng 78:117CrossRefGoogle Scholar
  4. 4.
    Williams RD, Chauret N, Bedard C, Archambault J (1992) Biotechnol Bioeng 40:971CrossRefGoogle Scholar
  5. 5.
    Asada M, Shuler M (1989) Appl Microbiol Biotechnol 30:475CrossRefGoogle Scholar
  6. 6.
    Brodelius P, Pedersen H (1993) Trends Biotechnol 11:30CrossRefGoogle Scholar
  7. 7.
    Bisson W, Beiderbeck R, Reichling J (1983) Planta Med 47:164CrossRefGoogle Scholar
  8. 8.
    Maisch R, Knoop B, Beiderbeck R (1986) Z Naturforsch 41c: 1041Google Scholar
  9. 9.
    Kim DJ, Chang HN (1990) Biotechnol Bioeng 36:460CrossRefGoogle Scholar
  10. 10.
    Byun SY, Pedersen H, Chin CK (1990) Phytochemistry 29:3135CrossRefGoogle Scholar
  11. 11.
    Collinge MA, Brodelius PE (1989) Phytochemistry 28:1101CrossRefGoogle Scholar
  12. 12.
    Ten Hoopen HJG, Gulik WM, Meijer JJ (1990) Proceedings of the VIIth International Congress on Plant Tissue and Cell Culture. Amsterdam, p 673Google Scholar
  13. 13.
    Byun SY, Pedersen H (1994) Biotechnol Bioeng 44:14CrossRefGoogle Scholar
  14. 14.
    Skinner NE, Walton NJ, Robins RJ, Rhodes MJC (1987) Phytochemistry 26:721CrossRefGoogle Scholar
  15. 15.
    Payne GF, Payne NN, Shuler ML, Asada M (1988) Biotechnol Lett 10:187CrossRefGoogle Scholar
  16. 16.
    Payne GF, Shuler ML (1988) Biotechnol Bioeng 31:922CrossRefGoogle Scholar
  17. 17.
    Dörnenburg H, Knorr D (1995) Enzyme Microb Technol 17:674CrossRefGoogle Scholar
  18. 18.
    Choi JW, Yoo DI, Lee WH, Pedersen H (1996) J Ferment Bioeng 81:47CrossRefGoogle Scholar
  19. 19.
    Choi JW (1990) PhD thesis, Rutgers UniversityGoogle Scholar
  20. 20.
    Choi JW (1992) Kor J Chem Eng 9:128CrossRefGoogle Scholar
  21. 21.
    Nigam SC, Wang HY (1986) Mathematical modeling of bioproduct adsorption using immobilized affinity adsorbents. In: Asenjo JA, Hong J (eds) Separation, recovery and purification in biotechnology. American Chemical Society, Washington DC, USA, p 153Google Scholar
  22. 22.
    Nigam SC, Siahpush AR, Wang HY (1990) AIChE J 36:1239CrossRefGoogle Scholar
  23. 23.
    Sim SJ, Chang HM, Liu JR, Jung KH (1994) J Ferment Bioeng 78:229CrossRefGoogle Scholar
  24. 24.
    Knoop B, Beiderbeck R (1983) Z Naturforsch 38c:484Google Scholar
  25. 25.
    Beiderbeck R, Knoop B (1984) Z Naturforsch 39c:45Google Scholar
  26. 26.
    Knuth ME, Sahai OP (1991) US Pat 5, 068, 184Google Scholar
  27. 27.
    Becker H, Reichling J, Bisson W, Herold S (1984) 3rd European Congress on Biotechnology, Dechema, vol 1, p 209Google Scholar
  28. 28.
    Cormier F, Do CB (1988) Selection of monoterpene producing Mentha piperita cell lines. In: Schreier P (ed) Bioflavour '87. Walter de Gruyter, Berlin, p 357Google Scholar
  29. 29.
    Strobel J, Hieke M, Gröger D (1991) Plant Cell Tiss Org Cult 24:207CrossRefGoogle Scholar
  30. 30.
    Berlin J, Witte L (1988) Phytochemistry 27:127CrossRefGoogle Scholar
  31. 31.
    Kim DI, Hong HJ, Lee JE, Choi YS (1997) Proceedings of Asia-Pacific Biochemical Engineering Conference'97, vol 1, Beijing, p 516Google Scholar
  32. 32.
    Forche E, Schubert W, Kohl W, Höfle G (1984) 3rd European Congress on Biotechnology, vol 1, Dechema, p 189Google Scholar
  33. 33.
    Parr AJ, Robins RJ, Rhodes MJC (1987) Release of secondary metabolites by plant cell cultures. In: Webb C, Mavituna F (eds) Plant and animal cells: process possibilities. Ellis Horwood, Chichester, p 229Google Scholar
  34. 34.
    Robison RC, Cha DY (1985) Biotechnol Prog 1:18Google Scholar
  35. 35.
    Robins RJ, Rhodes MJ (1986) Appl Microbiol Biotechnol 24:35CrossRefGoogle Scholar
  36. 36.
    Garcia AA (1991) Biotechnol Prog 7:33CrossRefGoogle Scholar
  37. 37.
    Payne GF, Shuler ML (1985) Biotechnol Bioeng Symp 15:633Google Scholar
  38. 38.
    Villadsen JV, Michelsen M (1978) Solution of differential equation models by polynomial approximation. Prentice-Hall, Englewood Cliffs, USA, p 141Google Scholar
  39. 39.
    Metzler CM, Elfring GL, McEwen AJ (1974) Biometrics 30:562CrossRefGoogle Scholar
  40. 40.
    Choi JW, Kim YK, Park HK, Lee WH, Kim DI (1999) Biotechnol Bioprocess Eng 4:281CrossRefGoogle Scholar
  41. 41.
    Lee JE, Lee SY, Kim DI (1999) Biotechnol Bioprocess Eng 4:32CrossRefGoogle Scholar
  42. 42.
    Szejtli J (1988) Cyclodextrin technology. Kluwer Academic Publishers, The NetherlandsGoogle Scholar
  43. 43.
    Haggin J (1992) Chem Eng News 70:25Google Scholar
  44. 44.
    van Uden W, Woewrdenbag HJ, Pras N (1994) Plant Cell Tiss Org Cult 38:103CrossRefGoogle Scholar
  45. 45.
    Loftsson T, Brewster M (1996) J Pharm Sci 85:1017CrossRefGoogle Scholar
  46. 46.
    Rajewski RA, Stella VJ (1996) J Pharm Sci 85:1142CrossRefGoogle Scholar
  47. 47.
    Irie T, Uekama K, Hirayama F (1994) Drug Targeting Delivery 3:411Google Scholar
  48. 48.
    Elisabeth PCK, Patricia GY, Genevieve WS, Faan WB, William JJ, Michal CP, George HR (1995) J Biochem Mol Biol 270:17, 250Google Scholar
  49. 49.
    Ji JR, Yoo IJ, Park WM, Jeon KH, Kim CJ, Lim SB (1997) Korean J Anim Sci 39:599Google Scholar
  50. 50.
    Antonio M, Maria A, Paola M, Marco A, Michael C, Olivieri R, (1995) Arch Microbiol 164:290CrossRefGoogle Scholar
  51. 51.
    Han SM (1977) Biomed Chromatogr 11:259CrossRefGoogle Scholar
  52. 52.
    Tahara S, Shinagawa K, Minato K (1999) J Chromatogr 848:465CrossRefGoogle Scholar
  53. 53.
    Froamming K, Szejtli J (1994) Cyclodextrin in pharmacy. Kluwer Academic Publishers, DordrechtGoogle Scholar
  54. 54.
    Ramachadra RS, Ravishanker GA (1999) Process Biochem 35:341CrossRefGoogle Scholar
  55. 55.
    Hopp R (1993) Some highlights of H&R research: a review of nearly 120 years of research at Haarmann & Reimer. In: Hopp R, Mori K (eds) Recent developments in flavour and fragrance chemistry. VCH Publishers, Weinheim, Germany, p 14Google Scholar
  56. 56.
    Woerdenbag H, Pras N, Frijlink H, Lerk C, Malingre TM (1990) Phytochemistry 29:1551CrossRefGoogle Scholar
  57. 57.
    Lee JE, Hong HJ, Kim DI (1995) Theories and applications of chemical engineering, vol 1. Korean Institute of Chemical Engineers, Seoul, Korea, p 479Google Scholar
  58. 58.
    Ramachandra RS (1998) PhD thesis, University of Mysore, IndiaGoogle Scholar
  59. 59.
    Lim CH, Park SC, Shin MK, Cho GH (1996) Korean J Biotechnol Bioeng 11:411Google Scholar
  60. 60.
    Graf S, Knorr D (1993) Multiple shoot cultures of Mentha canadensis for biotechnological production of flavours. In: Schreier P, Winterhalter P (eds) Progress in flavour precursor studies, vol 4. Carol Stream: Allured Publishers, p 471Google Scholar
  61. 61.
    Park SC, Cho GH (1996) Korean J Biotechnol Bioeng 11:411Google Scholar
  62. 62.
    Cho GH, Pedersen H (1998) Biotechnol Tech 12:833CrossRefGoogle Scholar
  63. 63.
    Litwiler KS, Cattena GC, Bright FV (1990) Chimica Acta 237:485CrossRefGoogle Scholar
  64. 64.
    Ueno A, Suzuki I, Osa T (1990) Anal Chem 62:2461CrossRefGoogle Scholar
  65. 65.
    Stella VJ, Rajewski RA (1997) Pharm Res 14:556CrossRefGoogle Scholar
  66. 66.
    Muller BW, Bbrauns U (1986) J Pharm Sci 75:571CrossRefGoogle Scholar
  67. 67.
    Pitha J (1987) J Controlled Release 6:309CrossRefGoogle Scholar
  68. 68.
    Zia V, Rajewski R, Bornancini ER, Luna EA, Stella VJ (1997) J Pharm Sci 86:220CrossRefGoogle Scholar
  69. 69.
    Lee BJ, Lee JR (1995) Arch Pharm Res 18:22Google Scholar
  70. 70.
    Lee BJ, Choi HG, Kim CK, Keith AP, James WA, Robert LS (1997) Arch Pharm Res 20:560Google Scholar
  71. 71.
    Irwin PL, Brouillette JN, Giampa AJ, Hicks KB, Gehring AG, Tu SI (1998) Carbohydr Res 322:76Google Scholar
  72. 72.
    Woo GJ, Ha SM (1997) Korean J Food Sci Technol 29:302Google Scholar
  73. 73.
    Kula MR (1990) Bioseparation 1:181Google Scholar
  74. 74.
    Albertsson P, Johansson G, Tjerneld F (1990) Aqueous two-phase separations. In: Asenjo JA (ed) Separation processes in biotechnology. Marcel Dekker, New York, p 287Google Scholar
  75. 75.
    Kaul R, Mattiasson B (1991) Extractive bioconversions in aqueous two-phase systems. In: Mattiasson B, Holst O (eds) Extractive bioconversion. Marcel Dekker, New York, p 173Google Scholar
  76. 76.
    Kaul R, Mattiasson B (1986) Appl Microbiol Biotechnol 24:259CrossRefGoogle Scholar
  77. 77.
    Zijlstra GM, de Gooijer CD, van der Pol LA, Tramper J (1996) Enzyme Microb Technol 19:2CrossRefGoogle Scholar
  78. 78.
    Zijlstra GM, Michielsen MJF, de Gooijer CD, van der Pol LA, Tramper J (1996) Biotechnol Prog 12:363CrossRefGoogle Scholar
  79. 79.
    Hooker BS, Lee JM (1990) Plant Cell Rep 8:546CrossRefGoogle Scholar
  80. 80.
    Ileva MP, Bakalova A, Mihneva M, Pavlov A, Dolapchiev L (1996) Biotechnol Bioeng 51:488CrossRefGoogle Scholar
  81. 81.
    Ileva M, Kojuharova A, Pavlov A, Mihneva M, Shterev I (1995) Biotechnol Biotechnol Eq 9:71Google Scholar
  82. 82.
    Buitelaar RM, Leenen EJTM, Tramper J (1992) Biocatalysis 6:73CrossRefGoogle Scholar
  83. 83.
    Choi YS, Lee SY, Kim DI (1999) J Microbiol Biotechnol 9:589Google Scholar
  84. 84.
    Shintani Y, Iwamoto K, Kitano K (1988) Appl Microbiol Biotechnol 27:533Google Scholar
  85. 85.
    Hong HJ, Lee JE, Ahn JE, Kim DI (1998) J Microbiol Biotechnol 8:478Google Scholar
  86. 86.
    Mattiasson B, Ling TGI (1987) Extraction in aqueous two-phase systems for biotechnology. In: Verrall MS, Hudson MJ (eds) Bioseparation for biotechnology. Ellis Horwood, Chichester, p 270Google Scholar
  87. 87.
    Tjerneld F, Johansson G (1990) Bioseparation 1:255Google Scholar
  88. 88.
    Walter H, Johansson G (1994) Methods in enzymology, vol 228. Aqueous two-phase systems. Academic Press, San DiegoGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2001

Authors and Affiliations

  • Jeong-Woo Choi
    • 1
  • Gyu Heon Cho
    • 2
  • Sang Yo Byun
    • 3
  • Dong-Il Kim
    • 4
  1. 1.Department of Chemical EngineeringSogang UniversitySeoulKorea
  2. 2.Department of Chemical EngineeringKangwon National UniversityChunchonKorea
  3. 3.Department of Chemical Engineering and TechnologyAjou UniversitySuwonKorea
  4. 4.Department of Biological Engineering and Center of Advanced Bioseparation TechnologyInha UniversityInchonKorea

Personalised recommendations