Advertisement

Transport phenomena in magnetic fluids in cylindrical geometry

  • Stefan Odenbach
Conference paper
Part of the Lecture Notes in Physics book series (LNP, volume 549)

Abstract

Flow and properties of suspensions of magnetic nanoparticles - commonly called magnetic fluids or ferrofluids - can significantly be controlled and influenced by the action of weak magnetic fields with a strength below 100 mT. This makes them an interesting medium for various investigations in hydrodynamic research. In particular transport phenomena like the transport of heat, momentum or matter will depend qualitatively as well as quantitatively on the strength and direction of magnetic fields applied to the magnetic fluids under investigation. Due to the usual technique for generation of variable magnetic fields by means of solenoids - providing a homogeneous axial magnetic field - or straight current leading wires - generating an azimuthal field with radial gradient - such investigations are preferably carried out in cylindrical geometry (see Fig. 1), matching the geometry of the magnetic fields applied.

Keywords

Critical Frequency Magnetic Fluid Force Density Critical Reynolds Number Carrier Liquid 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    O. Ambacher, S. Odenbach, K. Stierstadt: Rotational viscosity in ferrofluids. Z. Phys. B-Condensed Matter 86 29 (1992)CrossRefADSGoogle Scholar
  2. 2.
    P. Fannin, B. K. P. Scaife, S. W. Charles: Relaxation and resonance in ferrofluids. J. Magn. Magn. Mat. 122 159 (1993)CrossRefADSGoogle Scholar
  3. 3.
    M. Holderied, L. Schwab, K. Stierstadt Z. Phys. B-Condensed Matter (70) 257 (1988)CrossRefGoogle Scholar
  4. 4.
    E. Kneller: Ferromagnetismus. 1st edition, (Springer-Verlag, Berlin 1962).zbMATHGoogle Scholar
  5. 5.
    M. Lücke priv. comm.Google Scholar
  6. 6.
    J. P. McTague: Magnetoviscosity of magnetic colloids. J. Chem. Phys. 51, 1 133 (1969)CrossRefADSGoogle Scholar
  7. 7.
    M. Niklas: Taylor-Wirbel Strömung von Ferrofluiden im Spalt zwischen konzentrischen rotierenden Zylindern im Magnetfeld. Ber. KFA Jülich Jul-2246 (1988)Google Scholar
  8. 8.
    A. N. Vislovich, V. A. Novikov, A. K. Sinitsyn J. Appl. Mech. Tech. Phys. 27, 1 72 (1986)CrossRefADSGoogle Scholar
  9. 9.
    S. Odenbach: Taylor Rotation in magnetischen Flüssigkeiten Diplom Thesis, University of Munich (1989)Google Scholar
  10. 10.
    S. Odenbach, H. Gilly: Taylor vortex flow of magnetic fluids under the influence of an azimuthal magnetic field. J. Magn. Magn. Mat. 152 123 (1996)CrossRefADSGoogle Scholar
  11. 11.
    S. Odenbach: Microgravity experiments on thermomagnetic convection in magnetic fluids. J. Magn. Magn. Mat. (149) 155 (1995)CrossRefADSGoogle Scholar
  12. 12.
    K. O’Grady, H. K. Stewardson, R. W. Chantrell, D. Fletcher, D. Unwin, M. R. Padur. IEEE Trans. Magn. 22, 51134 (1986)CrossRefADSGoogle Scholar
  13. 13.
    S. S. Papell U.S. Patent No.3,215,572 (1965)Google Scholar
  14. 14.
    L. Schwab: Konvektion in Ferrofluiden Doctoral Thesis, University of Munich (1990)Google Scholar
  15. 15.
    M. Shliomis: Effective viscosity of magnetic fluids. Sov. Phys. JETP 34, 6 1291 (1972)ADSGoogle Scholar
  16. 16.
    P. J. Stiles, P. J. Blennerhassett: Stability of cylindrical Couette flow of a radially magnetized ferrofluid in a radial temperature gradient, J. Magn. Magn. Mat. 122 207 (1993)CrossRefADSGoogle Scholar
  17. 17.
    Y. Takeda: Measurement of velocity profile of mercury flow by ultrasound Doppler shift method. Nuclear Technology 79 120 (1987)Google Scholar
  18. 18.
    J. Walowit, S. Tsao, R.C. DiPrima: Trans. AME: J. Appl. Mech. 31 585 (1964)zbMATHGoogle Scholar
  19. 19.
    G. Wilde, G. P. Gorler, R. Willnecker: Specific heat capacity of undercooled magnetic melts. Appl. Phys. Lett. 68, 21 2953 (1996)CrossRefADSGoogle Scholar
  20. 20.
    G. Wilde, G. P. Gorler, R. Willnecker: The specific heat of highly undercooled (Co, Ni, Fe)-Pd melts. J. Non-Cryst. Solids 205–207, 1 317 (1996)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2000

Authors and Affiliations

  • Stefan Odenbach
    • 1
  1. 1.ZARMUniversity of BremenBremenGermany

Personalised recommendations