Advertisement

Taylor vortices at different geometries

  • Manfred Wimmer
Conference paper
Part of the Lecture Notes in Physics book series (LNP, volume 549)

Abstract

Flow fields between differently shaped bodies of revolution are studied. These bodies are rotating cones with different apex angles, cylinder-cone combinations, disks as well as oblate and prolate ellipsoids. The basic flow are fully three-dimensional and influence the occurring instabilities. The dependence of the occurrence and the development of Taylor vortices, Görtler vortices and cross-flow instabilities on the described geometries are discussed. By separating the influence of the dynamics and the geometry on the vortices the effect of both parameters can be studied separately. Due to the simultaneous existence of sub- and supercritical flows the development at the threshold can be studied very clearly. Furthermore, the rich variety of occuring flow patterns - often existing side by side - offers new insides in unstable flows. A possible transition from counter-rotating Taylor vortices to unidirectional-rotating cross-flow instabilities is described. The influence of the governing parameters, like acceleration, gap width etc. are discussed.

Keywords

Apex Angle Taylor Number Axial Extension Taylor Vortex Prolate Ellipsoid 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Taylor, G. I.: Stability of a viscous liquid contained between two rotating cylinders. Phil.Trans. Roy. Sci. A 223, 289–343 (1923).CrossRefADSGoogle Scholar
  2. 2.
    Wimmer, M.: Experiments on a viscous fluid flow between concentric rotating spheres. J. Fluid Mech. 78, 317–335(1976).CrossRefADSGoogle Scholar
  3. 3.
    Wimmer, M.:Viscous flowflow and instabilities near rotating bodies. Prog. Aerospace Sci. 25, 43–103 (1988).Google Scholar
  4. 4.
    Wimmer, M.: An experimental investigation of Taylor vortex flow between conical cylinders. J. Fluid Mech. 292, 205–227 (1995).CrossRefADSGoogle Scholar
  5. 5.
    Noui-Mehidi, M. N., Wimmer, M.: Free surface effects on the flow between conical cylinders. Acta Mech. 135, 13–25 (1999).zbMATHCrossRefGoogle Scholar
  6. 6.
    Denne, B., Wimmer, M.: Travelling Taylor vortices in closed systems. Acta Mech. 133, 69–85 (1999).zbMATHCrossRefGoogle Scholar
  7. 7.
    Wimmer, M.: Wirbelbehaftete Strömungen im Spalt zwischen Zylinder-Kegel-Kombinationen. Strömungsmechanik und Strömungsmaschinen, Universität Karlsruhe, 44, 59–83 (1992).Google Scholar
  8. 8.
    Abboud, M.: Ein Beitrag zur theoretischen Untersuchung von Taylor-Wirbeln im Spalt zwischen Zylinder/Kegel-Konfigurationen. ZAMM 68, 275–277 (1988).CrossRefGoogle Scholar
  9. 9.
    Wimmer, M.: ‘Vortex patterns between cones and cylinders’. In: Ordered and turbulent patterns in Taylor-Couette flow. Eds.: C. D. Andereck, F. Hayot. NATO ASI Series B. Physics 297, Plenum Press N. Y. 205–211 (1992).Google Scholar
  10. 10.
    Dominguez-Lerma, M. A., Cannel, D. S., Ahlers, G.: Eckhaus boundary and wave-number selection in rotating Couette-Taylor flow. Phys. Rev. A 34:6, 4956–4970 (1986).CrossRefADSGoogle Scholar
  11. 11.
    Wimmer, M., Zierep, J.: Transition from Taylor vortices to cross-flow instabilities. Acta Mech. (to appear: 2000).Google Scholar
  12. 12.
    Gregory, N., Stuart, J. T., Walker, W. S.: On the stability of three-dimensionalb boundary layers with application to the flow due to a rotating disk. Phil. Trans. Roy. Sci. A 248, 155–199 (1956).CrossRefADSMathSciNetGoogle Scholar
  13. 13.
    Hoffmann, N., Busse, F, H.: Instabilities of shear flows between two coaxial differentially rotating cones. Phys. of Fluids 11:6, 1676–1678 (1999).CrossRefADSMathSciNetzbMATHGoogle Scholar
  14. 14.
    Wimmer, M.: Strömungen zwischen rotierenden Ellipsen. ZAMM 69, 616–619 (1989).Google Scholar
  15. 15.
    Hocking, L. M.: The instability of flow in the narrow gap between two prolate spheroids. Q. J. Mech. Appl. Math. 34, 475–488 (1981).zbMATHCrossRefGoogle Scholar
  16. 16.
    Rafique, M.: Contribution a lécoulement entre deux cylindres coaxiaux a entrefer constant et a entrefer ondule par la surface du cylindre interieur tournant. Ph. D. Thesis, INPL, Nancy (1999)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2000

Authors and Affiliations

  • Manfred Wimmer
    • 1
  1. 1.Fachgebiet StrömungsmaschinenUniversität (TH) KarlsruheKarlsruheGermany

Personalised recommendations