Advertisement

Magnetohydrodynamic flows in spherical shells

  • Rainer Hollerbach
Conference paper
Part of the Lecture Notes in Physics book series (LNP, volume 549)

Abstract

After reviewing the derivation of the equations governing the evolution of magnetic fields in electrically conducting fluids, I consider two largely distinct classes of such phenomena in spherical shells. The first is kinematic dynamo theory, in which a flow is prescribed, and one searches for self-excited magnetic fields. The second is magnetic Couette flow, in which a magnetic field is imposed, and one solves for the flow and the induced field. In both cases existing results are reviewed; in the latter case some new results are also presented.

Keywords

Shear Layer Lorentz Force Spherical Shell Hartmann Number Magnetic Reynolds Number 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    R. Hollerbach: Phys. Earth Planet Inter. 98, 163 (1996)CrossRefADSGoogle Scholar
  2. 2.
    D.R. Fearn: Rep. Prog. Phys. 61, 175 (1998)CrossRefADSGoogle Scholar
  3. 3.
    G.A. Glatzmaier, P.H. Roberts: Int. J. Eng. Sci. 36, 1325 (1998)CrossRefMathSciNetGoogle Scholar
  4. 4.
    L. Mestel: Stellar Magnetism (Oxford University Press, Oxford 1999)Google Scholar
  5. 5.
    M. Núñez, A. Ferriz-Mas, eds.: Stellar Dynamos: Nonlinearity and Chaotic Flows (Astronomical Society of the Pacific Conference Series 178, 1999)Google Scholar
  6. 6.
    W.H. Press, B.P. Flannery, S.A. Teukolsky, W.T. Vetterling: Numerical Recipes: The Art of Scientific Computing (Cambridge University Press, Cambridge 1986)Google Scholar
  7. 7.
    P.H. Roberts: An Introduction to Magnetohydrodynamics (Elsevier, New York 1967)Google Scholar
  8. 8.
    H.K. Moffatt: Magnetic Field Generation in Electrically Conducting Fluids (Cambridge University Press, Cambridge 1978)Google Scholar
  9. 9.
    E.N. Parker: Cosmical Magnetic Fields: their Origin and their Activity (Clarendon Press, Oxford 1979)Google Scholar
  10. 10.
    H. Bondi, T. Gold: Mon. Not. R. Astr. Soc. 110, 607 (1950)zbMATHADSMathSciNetGoogle Scholar
  11. 11.
    E.C. Bullard, H. Gellman: Phil. Trans. R. Soc. Lond. A 247, 213 (1954)CrossRefADSMathSciNetzbMATHGoogle Scholar
  12. 12.
    R. Hollerbach: Int. J. Num. Meth. Fluids, in pressGoogle Scholar
  13. 13.
    T.G. Cowling: Mon. Not. R. Astr. Soc. 94, 39 (1934)ADSGoogle Scholar
  14. 14.
    S.I. Braginsky: Sov. Phys. JETP 20, 726 (1965)Google Scholar
  15. 15.
    R. Hide, T.N. Palmer: Geophys. Astrophys. Fluid Dyn. 19, 301 (1982)zbMATHCrossRefADSGoogle Scholar
  16. 16.
    D. Lortz, R. Meyer-Spasche: Math. Meth. Appl. Sci. 4, 91 (1982); Z. Naturforsch. A 37, 736 (1982)zbMATHCrossRefMathSciNetGoogle Scholar
  17. 17.
    D.J. Ivers, R.W. James: Phil. Trans. R. Soc. Lond. A 312, 179 (1984)zbMATHCrossRefADSMathSciNetGoogle Scholar
  18. 18.
    W.M. Elsasser: Phys. Rev. 69, 106 (1946)zbMATHCrossRefADSMathSciNetGoogle Scholar
  19. 19.
    F.H. Busse: J. Geophys. Res. 80, 278 (1975)ADSCrossRefGoogle Scholar
  20. 20.
    R. Kaiser, B.J. Schmitt, F.H. Busse: Geophys. Astrophys. Fluid Dyn. 77, 93 (1994)CrossRefADSGoogle Scholar
  21. 21.
    G.E. Backus: Ann. Phys. 4, 372 (1958)zbMATHCrossRefADSMathSciNetGoogle Scholar
  22. 22.
    S. Childress: Théorie magnetohydrodynamique de l’effet dynamo. Report, Department of Mechanics, Faculty of Science, University of Paris (1969)Google Scholar
  23. 23.
    M.R.E. Proctor: Geophys. Astrophys. Fluid Dyn. 9, 89 (1977)CrossRefADSGoogle Scholar
  24. 24.
    H.K. Moffatt, M.R.E. Proctor: J. Fluid Mech. 154, 493 (1985)zbMATHCrossRefADSGoogle Scholar
  25. 25.
    F.E.M. Lilley: Proc. R. Soc. Lond. A 316, 153 (1970)ADSCrossRefGoogle Scholar
  26. 26.
    D. Gubbins: Phil. Trans. R. Soc. Lond. A 274, 493 (1973)CrossRefADSGoogle Scholar
  27. 27.
    J.J. Love, D. Gubbins: Geophys. Res. Lett 23, 857 (1996)CrossRefADSGoogle Scholar
  28. 28.
    D. Gubbins, C.N. Barber, S. Gibbons, J.J. Love: Proc. R. Soc. Lond. A, in pressGoogle Scholar
  29. 29.
    J.J. Love, D. Gubbins: Geophys. J. Int. 124, 787 (1996)CrossRefADSGoogle Scholar
  30. 30.
    R. Hollerbach, D.J. Galloway, M.R.E. Proctor: Phys. Rev. Lett 74, 3145 (1995); Geophys. Astrophys. Fluid Dyn. 87, 111 (1998)CrossRefADSGoogle Scholar
  31. 31.
    K.-H. Rädler: Geophys. Astrophys. Fluid Dyn. 20, 191 (1982)zbMATHCrossRefGoogle Scholar
  32. 32.
    K.-H. Rädler, U. Geppert: In [5], 151 (1999)Google Scholar
  33. 33.
    F. Krause, K.-H. Rädler: Mean-Field Magnetohydrodynamics and Dynamo Theory (Pergamon Press, Berlin 1980)zbMATHGoogle Scholar
  34. 34.
    E.N. Parker: Astrophys. J. 281, 839 (1984)CrossRefADSGoogle Scholar
  35. 35.
    C.A. Jones: Phil. Trans. R. Soc. Lond. A, in pressGoogle Scholar
  36. 36.
    K. Zhang, D. Gubbins: Geophys. J. Int., in press; Phil. Trans. R. Soc. Lond. A, in pressGoogle Scholar
  37. 37.
    H. Fuchs, K.-H. Rädler, M. Rheinhardt: Astr. Nach. 320, 129 (1999)zbMATHCrossRefADSGoogle Scholar
  38. 38.
    S. Chandrasekhar: Hydrodynamic and Hydromagnetic Stability (Dover, New York 1961)zbMATHGoogle Scholar
  39. 39.
    K. Stewartson: J. Fluid Mech. 26, 131 (1966)zbMATHCrossRefADSGoogle Scholar
  40. 40.
    R. Hollerbach: Proc. R. Soc. Lond. A 444, 333 (1994)zbMATHADSCrossRefGoogle Scholar
  41. 41.
    E. Dormy, P. Cardin, D. Jault: Earth Planet Sci. Lett. 160, 15 (1998)CrossRefADSGoogle Scholar
  42. 42.
    D.B. Ingham: Phys. Fluids 12, 389 (1969)zbMATHCrossRefADSGoogle Scholar
  43. 43.
    S. Vempaty, D.E. Loper: Phys. Fluids 18, 1678 (1975); Z. Angew. Math. Phys. 29, 450 (1978)CrossRefADSGoogle Scholar
  44. 44.
    N. Kleeorin, I. Rogachevskii, A. Ruzmaikin, A. Soward, S. Starchenko: J. Fluid Mech. 344, 213 (1997)zbMATHCrossRefADSMathSciNetGoogle Scholar
  45. 45.
    S.V. Starchenko: J. Exp. Theor. Phys. 85, 1125 (1997); Phys. Fluids 10, 2414 (1998); Studia Geophys. Geodaet. 42, 314 (1998)CrossRefADSGoogle Scholar
  46. 46.
    R. Hollerbach, S. Skinner: in preparationGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2000

Authors and Affiliations

  • Rainer Hollerbach
    • 1
  1. 1.Department of MathematicsUniversity of GlasgowGlasgowUK

Personalised recommendations