Advertisement

Taylor-Couette system with asymmetric boundary conditions

  • Oliver Meincke
  • Christoph Egbers
  • Nicoleta Scurtu
  • Eberhard Bänsch
Conference paper
Part of the Lecture Notes in Physics book series (LNP, volume 549)

Abstract

We report on a study on stability, bifurcation scenarios and routes into chaos in Taylor-Couette flow. By increasing the Reynolds number with the angular velocity of the driving inner cylinder, the flow bifurcates from laminar mid-plane- symmetric basic flow via a pitchfork bifurcation to mid-plane-symmetric Taylor vortex flow. Both flow states are rotationally symmetric. We now compare the dynamical behaviour in a system with symmetric boundary conditions with the effects in an asymmetric system. We also could vary the gap widths. The different flow states can be detected by visualization with small aluminium flakes and also measured by Laser Doppler Velocimetry (LDV)and Particle Image Velocimetry (PIV). The dynamical behaviour of the rotating flow is discussed by time series analysis methods and velocity bifurcation diagrams and then compared with numerical calculations.

Keywords

Reynolds Number Particle Image Velocimetry Bifurcation Diagram Outer Cylinder Laser Doppler Velocimetry 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Ahlers, G.:Experiments on Bifurcations and One-Dimensional Patterns in Nonlin-ear Systems far from Equilibrium; Complex Systems, SFI Studies in the Sciences of Complexity, Ed.D. Stein, Addison-esley Longman Publishing Group Ltd.,(1989)Google Scholar
  2. 2.
    Bänsch, E.:Simulation of instationary incompressible flows; Acta Math.Univ. Comenianae, volume [LXVII], pp101–114 (1998)Google Scholar
  3. 3.
    Benjamin, T.B.:Bifurcation Phenomena in steady flows of a viscous fluid. I.Theory; Proc.Roy.Soc.Lond., volume [A359], pp1–26 (1978)Google Scholar
  4. 4.
    Benjamin, T.B.:Bifurcation Phenomena in steady flows of a viscous fluid. I.Experiments; Proc.Roy.Soc.Lond., volume [A359], pp27–43(1978)Google Scholar
  5. 5.
    Blohm, C.:Bifurcation Phenomena in Taylor-Couette flow with asymmetric boundary conditions, diploma thesis, ZARM, University of Bremen, (1997)Google Scholar
  6. 6.
    Chossat, P.; Iooss, G.:The Couette-Taylor Problem.Applied Math.Sc., vol 102, Springer (1994)Google Scholar
  7. 7.
    Cliffe, K.A.and Mullin, T.:A numerical and experimental study of the Taylor problem with asymmetric end conditions, 6th Int. Symp. on Finite Element Method in flow problems, June 16–20, Antibes, France,(1986)Google Scholar
  8. 8.
    Bristeau, M.O.; Glowinski, R.; Periaux, J.:Numerical methods for the Navier Stokes equations. Application to the simulation of compressible and incompressible flows.Computer Physics Report 6, 73–188 (1987)Google Scholar
  9. 9.
    Koschmieder, E.L.:Bénard Cells and Taylor Vortices; Cambridge University Press, Cambridge, England (1993)Google Scholar
  10. 10.
    Meyer-pasche, R.:Pattern Formation in Viscous Flow; International Series of Numerical Mathematics, volume [128], Birkh-auser Verlag (1999)Google Scholar
  11. 11.
    Raffel, M., Willert C., Kompenhans J.:Particle Image Velocimetry:A Practical Guide Springer Verlag (1998)Google Scholar
  12. 12.
    Ruck, B.(Edt.):Lasermethoden in der Strömungsmeßtechnik, AT-Fachverlag Stuttgart, 1990Google Scholar
  13. 13.
    Ruelle, D.and Takens, F.:On the nature of turbulence; Commun.Math.Phys., volume [20], pp167–192 (1971)zbMATHCrossRefADSMathSciNetGoogle Scholar
  14. 14.
    Rumpf, M.and Schmidt, A.et.al.:GRAPE, Graphics Programming Environment; report no.8, SFB 256 Bonn (1990)Google Scholar
  15. 15.
    Tagg, R.:The Couette-Taylor Problem; Nonlinear Science Today, volume [4], pp1–25(1994)Google Scholar
  16. 16.
    Taylor, G.I.:Stability of a viscous liquid contained between two rotating cylinders; Phil.Trans., volume [A223], pp289–343 (1923)Google Scholar
  17. 17.
    Tenhaeff, M.:Berechnung inkompressibler rotationssymmetrischer Strömungen elektrisch leitender Flüssigkeiten unter dem Einfluß von rotierenden Magnetfeldern. Diploma thesis, University of Freiburg (1997)Google Scholar
  18. 18.
    Wulf, P.:Untersuchungen zum laminar turbulenten Überschlag im konzentrischen Kugelspalt Fortschrittberichte(VDI), Reihe 7, Nr.333 (1997)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2000

Authors and Affiliations

  • Oliver Meincke
    • 1
  • Christoph Egbers
    • 1
  • Nicoleta Scurtu
    • 2
  • Eberhard Bänsch
    • 2
  1. 1.ZARM, Center of Applied Space Technology and MicrogravityUniversity of BremenBremenGermany
  2. 2.Center of TechnomathematicsUniversity of BremenBremenGermany

Personalised recommendations