Advertisement

Higher order dynamics of baroclinic waves

  • Bernd Sitte
  • Christoph Egbers
Conference paper
Part of the Lecture Notes in Physics book series (LNP, volume 549)

Abstract

Instabilities in the form of baroclinic waves occur in a rotating cylindrical annulus cooled from within. Flow visualisation studies and LDV-measurements of the radial velocity component were carried out in an annulus with an aspect ratio of 4.4. The flow undergoes transitions from the laminar stable state through baroclinic waves, both stable and time-varying, to an irregular state. Based on the time series of the radial velocity at fixed point in the rotating annulus, the attractors of the flow match previous results based on temperature measurements. The bifurcation diagram of extrema in the radial velocity shows the existence of low dimensional chaos at the transition from the axisymmetric flow to periodic baroclinic waves. This bifurcation scenario at low rotation rates is substantially different from the nonlinear behaviour of Taylor-Couette flow.

Keywords

Lyapunov Exponent Bifurcation Diagram Laser Doppler Velocimetry Drift Frequency Baroclinic Instability 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    P. Bernardet, A. Butet, M. Déqué: J. Atmos. Sci., 47, No 24, 3023–3043 (1990)CrossRefADSGoogle Scholar
  2. 2.
    M. Bowden, H. F. Eden: J. Atmos. Sci, 22, 185–195 (1965)CrossRefADSGoogle Scholar
  3. 3.
    F. H. Busse, C. R. Carrigan: J. Fluid Mech., 62, 579–592 (1972)CrossRefADSGoogle Scholar
  4. 4.
    T. Buzug, G. Pfister: Phys. Rev. A, 45 (10), 7073–7098 (1992)CrossRefADSGoogle Scholar
  5. 5.
    G. Buzyna, R. L. Pfeffer, R. Kung: J. FLuid Mech., 145, 377–403 (1984)CrossRefADSGoogle Scholar
  6. 6.
    T. V. Davies: Phil. Trans. R. Soc. Lond. A, 249, 27–64 (1956)CrossRefADSzbMATHGoogle Scholar
  7. 7.
    E. T. Eady: Tellus, 1, 33–52 (1949)MathSciNetCrossRefGoogle Scholar
  8. 8.
    C. Egbers, H. J. Rath: ‘LDV-measurements on wide gap instabilities in spherical Couette flow’. In: Developments in Laser Techniques and Applications to Fluid Mechanics, ed. by R. J. Adrian, D. F. G. Durao, F. Durst, M. V. Heitor, M. Maeda, J. H. Whitelaw (Springer, Berlin Heidelberg 1996), pp. 45–66Google Scholar
  9. 9.
    J. S. Fein, R. L. Pfeffer: J. Fluid Mech., 22, 541–558 (1976)Google Scholar
  10. 10.
    W. W. Fowlis, R. Hide: J. Atmos. Sci., 22, 541–558 (1965)CrossRefADSGoogle Scholar
  11. 11.
    W.-G. Früh, P. L. Read: Phil. Trans. R. Soc. Lond. A, 355, 101–153 (1997)zbMATHCrossRefADSGoogle Scholar
  12. 12.
    J. Herrmann, F. H. Busse: Physics of Fluids, 10, No. 7, 1611–1620 (1998)zbMATHCrossRefADSMathSciNetGoogle Scholar
  13. 13.
    R. Hide: Phil. Trans. R. Soc. Lond. A, 250, 441–478 (1958)CrossRefADSGoogle Scholar
  14. 14.
    R. Hide, P.-J. Mason: Phil. Trans. Roy. Soc. Lond. A, 268, 201–232 (1970)CrossRefADSGoogle Scholar
  15. 15.
    R. Hide, P.-J. Mason: Adv. Physics, 24, No. 1, 47–100 (1975)CrossRefADSGoogle Scholar
  16. 16.
    P. K. Kundu: Fluid Mechanics (Academic Press, San Diego 1990)zbMATHGoogle Scholar
  17. 17.
    A. Lorenzen, G. E. A. Meier, M. Assenheimer, E.-A. M:uller: Experiments in Fluids, 8, 286–290 (1990)CrossRefADSGoogle Scholar
  18. 18.
    O. Meincke, C. Egbers: Phys. Chem. Earth (B), 24, no. 5, 467–471 (1999)CrossRefGoogle Scholar
  19. 19.
    O. Morita, M. Uryu: J. Atmos. Sci., 46, No. 15, 2349–2355Google Scholar
  20. 20.
    M. D. Mundt, N. H. Brummell, J. E. Hart: J. Fluid Mech., 291, 109–138 (1995)zbMATHCrossRefADSMathSciNetGoogle Scholar
  21. 21.
    J. Pedlosky: Geophysical Fluid Dynamics (Springer, New York 1987)zbMATHGoogle Scholar
  22. 22.
    R. L. Pfeffer, G. Buzyna, R. Kung: J. Atmos. Sci., 37, 2129–2149 (1980)CrossRefADSGoogle Scholar
  23. 23.
    R. L. Pfeffer, S. Applequist, R. Kung, C. Long, G. Buzyna: Theoret. Comput. Fluid Dynamics, 9, 253–267 (1997)zbMATHCrossRefADSGoogle Scholar
  24. 24.
    R. T. Pierrehumbert, K. L. Swanson: Annu. Rev. Fluid. Mech., 27, 419–467 (1995)CrossRefADSMathSciNetGoogle Scholar
  25. 25.
    P. L. Read, M. J. Bell, D. W. Johnson, R, M. Small: J. Fluid Mech., 238, 599–632, (1992)CrossRefADSMathSciNetGoogle Scholar
  26. 26.
    B. Sitte, C. Egbers: Phys. Chem. Earth (B), 24, No. 5, 473–476 (1999)Google Scholar
  27. 27.
    F. Takens: ‘Detecting strange attractors in turbulence’. In: Lecture Notes in Mathematics: Dynamical Systems and Turbulence, 898, ed. by D. Rand and L. S. Young (Springer, Berlin Heidelberg 1980), pp. 366–381CrossRefGoogle Scholar
  28. 28.
    D. J. Tritton: Physical Fluid Dynamics, 2nd edition (Oxford University Press, Oxford 1988)Google Scholar
  29. 29.
    P. Wulf: VDIF ortschrittberichte Strömungstechnik: Untersuchungen zum laminarturbulenten Übergang im konzentrischen Kugelspalt, Band 333 (VDI-Verlag, Düsseldorf1997)Google Scholar
  30. 30.
    P. Wulf, C. Egbers, H. J. Rath: Phys. Fluids, 11, No. 6, 1359–1372 (1999)CrossRefADSMathSciNetzbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2000

Authors and Affiliations

  • Bernd Sitte
    • 1
  • Christoph Egbers
    • 1
  1. 1.Center of Applied Space Technology and MicrogravityUniversity of BremenGermany

Personalised recommendations