Tertiary and quaternary solutions for plane Couette flow with thermal stratification

  • R. M. Clever
  • Friedrich H. Busse
Conference paper
Part of the Lecture Notes in Physics book series (LNP, volume 549)


Numerical solutions describing steady wavy rolls are obtained for a horizontal Couette layer heated from above. Two different Prandtl numbers have been investigated, P = 0.71 and P = 7, but most of the results depend only on the Grashof number G. The stability of wavy solutions is analyzed with respect to disturbances that do not change the horizontal periodicity interval. Oscillatory quaternary solutions bifurcating from the steady wavy rolls have been obtained through forward integrations in time.


Nusselt Number Prandtl Number Rayleigh Number Internal Wave Steady Solution 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    S. Bottin, O. Dauchot, F. Daviaud, P. Manneville: Phys. Fluids 10, 2597 (1998)CrossRefADSGoogle Scholar
  2. 2.
    F.H. Busse, R.M. Clever: ZAMM 78, S323 (1998)zbMATHGoogle Scholar
  3. 3.
    F.H. Busse, J.A. Whitehead: J. Fluid Mech. 47, 305 (1971)CrossRefADSGoogle Scholar
  4. 4.
    A. Cherhabili, U. Ehrenstein: Eur. J. Mech. B/Fluids 14, 677 (1995)zbMATHMathSciNetGoogle Scholar
  5. 5.
    A. Cherhabili, U. Ehrenstein: J. Fluid Mech. 342, 159 (1997)zbMATHCrossRefADSMathSciNetGoogle Scholar
  6. 6.
    R.M. Clever, F.H. Busse: J. Fluid Mech. 234, 511 (1992)zbMATHCrossRefADSMathSciNetGoogle Scholar
  7. 7.
    R.M. Clever, F.H. Busse: J. Fluid Mech. 344, 137 (1997)zbMATHCrossRefADSMathSciNetGoogle Scholar
  8. 8.
    R.M. Clever, F.H. Busse, R.E. Kelly: J. Appl. Math. Phys. (ZAMP) 28, 771 (1977)CrossRefMathSciNetzbMATHGoogle Scholar
  9. 9.
    O. Dauchot, F. Daviaud: Phys. Fluids. 7, 901 (1995)CrossRefADSGoogle Scholar
  10. 10.
    P. Drazin, W. Reid: Hydrodynamic stability, (Cambridge University Press 1981)Google Scholar
  11. 11.
    M. Nagata: J. Fluid Mech. 188, 585 (1988)zbMATHCrossRefADSMathSciNetGoogle Scholar
  12. 12.
    M. Nagata: J. Fluid Mech. 217, 519 (1990)CrossRefADSMathSciNetGoogle Scholar
  13. 13.
    M. Nagata: ‘Stability of non-axisymmetric flows in the Taylor-Couette system’. In: Unstable and Turbulent Motion of Fluid, ed. by S. Kida (World Scientific 1993)Google Scholar
  14. 14.
    A. Schmiegel, B. Eckhardt: Phys. Rev. Letts. 79, 5250 (1997)CrossRefADSGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2000

Authors and Affiliations

  • R. M. Clever
    • 1
  • Friedrich H. Busse
    • 1
    • 2
  1. 1.Institute of Geophysics and Planetary Physics, UCLAUSA
  2. 2.Institute of PhysicsUniversity of BayreuthBayreuth

Personalised recommendations