Bifurcation and structure of flow between counter-rotating cylinders

  • Arne Schulz
  • Gerd Pfister
Conference paper
Part of the Lecture Notes in Physics book series (LNP, volume 549)


The properties of fluid flow in the Taylor-Couette experiment between weakly counter-rotating cylinders are investigated experimentally. Attention has been focused on the first instabilities and the detailed structure of the occurring flow states. Modern measurement techniques like LDV and PIV have been used together with visual observations to examine the flow patterns and the stability thresholds very precisely. Our experimental results had been compared with theoretical investigations.


Particle Image Velocimetry Axial Position Bottom Plate Outer Cylinder Spiral Wave 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    G.I. Taylor: Phil. Trans. Roy. Soc. London A 223 (1923)Google Scholar
  2. 2.
    C.D. Andereck, S.S. Liu, H.L. Swinney: J. Fluid Mech. 164 (1986)Google Scholar
  3. 3.
    J. Abshagen, G. Pfister: this book (2000)Google Scholar
  4. 4.
    J. Abshagen, A. Schulz, G. Pfister: ‘The Couette-Taylor flow: A paradigmatic system for instabilities, pattern formation and routes to chaos’. In: Nonlinear physics of complex systems-Current status and future trends, ed. by J. Parisi, S.C. Müller, W. Zimmermann (Springer, Heidelberg 1996) pp. 63–72Google Scholar
  5. 5.
    F.H. Busse, G. Pfister, D. Schwabe: ‘Formation of dynamical structures in axisymmetric fluid systems’. In: Evolution of spontaneous structures in dissipative continuous systems, ed. by F.H. Busse, S.C. Müller (Springer, Berlin 1998) pp. 86–126CrossRefGoogle Scholar
  6. 6.
    C.A. Jones: J. Fluid Mech. 120 (1982)Google Scholar
  7. 7.
    D. Coles: J. Fluid Mech. 75 (1976)Google Scholar
  8. 8.
    T.B. Benjamin: Proc. R. Soc. (London) 359 (1978)Google Scholar
  9. 9.
    D.G. Schaeffer: Math. Proc. Camb. Phil. Soc. 87 (1980)Google Scholar
  10. 10.
    G. Pfister, I. Rehberg: Phys. Lett. A 83 (1981)Google Scholar
  11. 11.
    U. Gerdts, J. von Stamm, T. Buzug, G. Pfister: Phys. Rev. E 49 (1994)Google Scholar
  12. 12.
    D. Coles: J. Fluid Mech. 21 (1965)Google Scholar
  13. 13.
    M. Gorman, H.L. Swinney: J. Fluid Mech. 117 (1982)Google Scholar
  14. 14.
    T. Mullin: Physical Review A 31 (1985)Google Scholar
  15. 15.
    H.A. Snyder: J. Fluid Mech. 35 (1968)Google Scholar
  16. 16.
    G.P. King, Y. Li, W. Lee, H.L. Swinney, P.S. Marcus: J. Fluid Mech. 141 (1984)Google Scholar
  17. 17.
    W.F. Langford, R. Tagg, E.J. Kostelich, H.L. Swinney, M. Golubitsky: Phys. Fluids 31 (1988)Google Scholar
  18. 18.
    Chr. Hoffmann, M. Lücke: this book (2000)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2000

Authors and Affiliations

  • Arne Schulz
    • 1
  • Gerd Pfister
    • 1
  1. 1.Institute of Experimental and Applied PhysicsUniversity of KielKielGermany

Personalised recommendations