Spiral vortices and Taylor vortices in the annulus between counter-rotating cylinders

  • Christian Hoffmann
  • Manfred Lücke
Conference paper
Part of the Lecture Notes in Physics book series (LNP, volume 549)


Vortices in the Taylor-Couette system with counter-rotating cylinders are investigated numerically in a set up with radius ratio η = 0.5. The full, time dependent Navier-Stokes equations are solved with a combination of a finite difference and a Galerkin method. Structure, dynamics, and bifurcation behavior of Taylor vortices and of spiral vortex solutions are elucidated. Some of their properties obtained for axially periodic boundary conditions are compared with recent experimental results.


Linear Stability Analysis Taylor Vortex Bifurcation Behavior Spiral Vortex Azimuthal Wave Number 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    E. R. Krueger, A. Gross, and R. C. DiPrima: On the relative importance of Taylor-vortex and nonaxisymmetric modes in flow between rotating cylinders, J. Fluid Mech. 24, 521 (1966).CrossRefADSGoogle Scholar
  2. 2.
    H. A. Snyder: Stability of rotating Couette flow. I. Asymmetric waveforms, Phys. Fluids 11, 728 (1968).CrossRefADSGoogle Scholar
  3. 3.
    C. D. Andereck, S. S. Liu, and H. L. Swinney: Flow regimes in a circular Couette system with independently rotating cylinders, J. Fluid Mech. 164, 155 (1986).CrossRefADSGoogle Scholar
  4. 4.
    W. F. Langford, R. Tagg, E. Kostelich, H. L. Swinney, and M. Golubitsky: Primary instabilites and bicriticality in flow between counter-rotating cylinders, Phys. Fluids, 31, 776 (1988).CrossRefADSGoogle Scholar
  5. 5.
    R. Tagg, W. S. Edwards, H. L. Swinney, and P. S. Marcus: Nonlinear standing waves in Couette-Taylor flow, Phys. Rev. A 39, 3734 (1988).Google Scholar
  6. 6.
    W. S. Edwards: Linear Spirals in the finite Couette-Taylor problem, in Instability and Transition, Vol. II, edited by M. Y. Hussaini, (Springer-Verlag, Berlin, 1990), p. 408.Google Scholar
  7. 7.
    R. Tagg: A Guide to literature related to the Taylor-Couette problem, in Ordered and Turbulent Patterns in Taylor-Couette Flow, edited by C. D. Andereck and F. Hayot (Plenum, New York, 1992).Google Scholar
  8. 8.
    P. Chossat and G. Iooss: The Couette-Taylor Problem, (Springer-Verlag, Berlin, 1994).zbMATHGoogle Scholar
  9. 9.
    J. Antonijoan, F. Marqués, and J. Sánchez: Non-linear spirals in the Taylor-Couette problem, Phys. Fluids 10 4, 829 (1998).zbMATHCrossRefADSMathSciNetGoogle Scholar
  10. 10.
    A. Schulz and G. Pfister: contribution to this volume.Google Scholar
  11. 11.
    C. W. Hirt, B. D. Nichols, and N. C. Romero: SOLA-A Numerical Solution Algorithm for Transient Fluid Flow, (Los Alamos Scientific Laboratory of the University of California, LA-5852, 1975)Google Scholar
  12. 12.
    R. Peyret and T. D. Taylor: Computational Methods in Fluid Flow, (Springer-Verlag, Berlin, 1983).Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2000

Authors and Affiliations

  • Christian Hoffmann
    • 1
  • Manfred Lücke
    • 1
  1. 1.Institut für Theoretische PhysikUniversität des SaarlandesSaarbrückenGermany

Personalised recommendations