Advertisement

Spatiotemporal intermittency in Taylor-Dean and Couette-Taylor systems

  • Innocent Mutabazi
  • Afshin Goharzadeh
  • Patrice Laure
Conference paper
Part of the Lecture Notes in Physics book series (LNP, volume 549)

Abstract

Spatiotemporal intermittency manifests itself by the coexistence of laminar and turbulent domains for the same value of the control parameter. In the Taylor- Dean system, the distributions of laminar domains size after algebraic and exponential regimes allow for a determination of critical properties in an analogy with directed percolation. In the Couette-Taylor system, only algebraic distribution of laminar domains size has been evidenced. A turbulent spiral coexists with laminar spiral destroying the occurrence of exponential regime.

Keywords

Axial Velocity Outer Cylinder Azimuthal Velocity Directed Percolation Nonlocal Term 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    P. Manneville, Structures Dissipatives et turbulence, ed. Alea-CEA Saclay (1991). See also H. Chaté and P. Manneville:’ spatiotemporal intermittency’, In: Turbulence: a tentative dictionary, ed. by P. Tabeling and O. Carodos, Plenum Press, N.Y. (1995), 341, 111-116.Google Scholar
  2. 2.
    D.J. Tritton, Physical Fluid Dynamics, Oxford University press, Oxford (1989). see also G.B. Schubauer and P.S. Klebano., NACA TN-3489 (1955).Google Scholar
  3. 3.
    I.J. Wygnanski and F. Champagne, J. Fluid Mech. 59, 281 (1973).CrossRefADSGoogle Scholar
  4. 4.
    F. Daviaud, J.J. Hegseth, P. Bergé, Phys.Rev. Lett. 69, 2511(1992).CrossRefADSGoogle Scholar
  5. 5.
    O. Dauchot and F. Daviaud, Phys. Fluids 7, 335(1995). See also O. Dauchot and F. Daviaud, Phys. Fluids 7, 901 (1995).CrossRefADSGoogle Scholar
  6. 6.
    S. Bottin, O. Dauchot and F. Daviaud, Phys. Rev. Lett. 79, 4377(1997).CrossRefADSGoogle Scholar
  7. 7.
    D. R. Carlson, S. E. Widnall and M.F. Peters, J. Fluid Mech. 121, 487 (1982). See also M. Nishioka and M. Asai, J. Fluid Mech. 150, 441 (1985).CrossRefADSGoogle Scholar
  8. 8.
    D Coles, J. Fluid Mech. 21, 385(1965). See also C. Van Atta, J. Fluid Mech 25, 495(1966).zbMATHCrossRefADSGoogle Scholar
  9. 9.
    C.D. Andereck, S.S. Liu and H.L. Swinney, J. Fluid Mech. 164, 155 (1986).CrossRefADSGoogle Scholar
  10. 10.
    M. Degen, I. Mutabazi and C.D. Andereck, Phys. Rev. E 53, 3495(1996).CrossRefADSGoogle Scholar
  11. 11.
    S. Ciliberto and P. Bigazzi, Phys. Rev. Lett. 60, 286 (1988).CrossRefADSGoogle Scholar
  12. 12.
    F. Daviaud, M. Bonetti and M. Dubois, Phys. Rev. A 42, 3388 (1990).CrossRefADSMathSciNetGoogle Scholar
  13. 13.
    H. Willaime, O. Cardoso and P. Tabeling, Phys. Rev. E 48, 288 (1993).CrossRefADSGoogle Scholar
  14. 14.
    M. Rabaud, S. Michalland and Y. Couder, Phys. Rev. Lett. 64, 184 (1990).CrossRefADSGoogle Scholar
  15. 15.
    K. Kaneko, Prog. Theo. Phys. 74, 1033 (1985).zbMATHCrossRefADSGoogle Scholar
  16. 16.
    H. Chate and P. Manneville, Europhys. Lett. 6, 591 (1988). See also H. Chate and P. Manneville, J. Stat. Phys. 56, 357 (1989).CrossRefADSGoogle Scholar
  17. 17.
    H. Chate et P. Manneville, Phys. Rev Lett. 58, 112 (1987).CrossRefADSGoogle Scholar
  18. 18.
    F. Daviaud, J. Lega, P. Bergé, P. Coullet and M. Dubois, Physica D 55, 287 (1992).CrossRefADSzbMATHGoogle Scholar
  19. 19.
    R.J. Deissler, J. Stat. Phys. 40, 371 (1985).zbMATHCrossRefMathSciNetADSGoogle Scholar
  20. 20.
    H. Chate, Nonlinearity 7, 185(1994).zbMATHCrossRefADSMathSciNetGoogle Scholar
  21. 21.
    Y. Pomeau, Physica D 23, 3 (1986).CrossRefADSGoogle Scholar
  22. 22.
    P. Grassberger and T. Schreiber, Physica D 50, 177 (1991).zbMATHCrossRefADSMathSciNetGoogle Scholar
  23. 23.
    K. Coughlin and P.S. Marcus, Phys. Rev. Lett. 77, 2214 (1996).CrossRefADSGoogle Scholar
  24. 24.
    P.W. Colovas et C.D. Andereck, Phys. Rev. E 55, 2736 (1997).CrossRefADSGoogle Scholar
  25. 25.
    J.J. Hegseth, C.D. Andereck, F. Hayot and Y. Pomeau, Phys. Rev. Lett. 62, 257 (1989).CrossRefADSGoogle Scholar
  26. 26.
    F. Hayot and Y. Pomeau, Phys. Rev. E 50, 2019 (1994).CrossRefADSGoogle Scholar
  27. 27.
    V. Hakim and Y. Pomeau, Eur.J. Mech.B. 10 Suppl., 131 (1991).MathSciNetGoogle Scholar
  28. 28.
    I. Mutabazi, J.J. Hegseth, C.D. Andereck and J. Wesfreid, Phys. Rev. Lett. 64, 1729 (1990).CrossRefADSGoogle Scholar
  29. 29.
    Y. Demay, G. Iooss and P. Laure, Eur. J. Mech. B 11, 621 (1992).zbMATHMathSciNetGoogle Scholar
  30. 30.
    P.G. Drazin and W.H. Reid, Hydrodynamic Stability, Cambridge University Press, N.Y. (1981).zbMATHGoogle Scholar
  31. 31.
    P. Chossat and G. Iooss, The Couette-Taylor problem, Springer-Verlag, N.Y. (1994).zbMATHGoogle Scholar
  32. 32.
    D. Stassinopoulos, J. Zhang, P. Alström and M.T. Levinsen, Phys. Rev. E 50, 1189 (1994).CrossRefADSGoogle Scholar
  33. 33.
    H. Litschke and K.G. Roesner, Exp. Fluids 24, 201 (1998).CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2000

Authors and Affiliations

  • Innocent Mutabazi
    • 1
  • Afshin Goharzadeh
    • 1
  • Patrice Laure
    • 2
  1. 1.Laboratoire de MécaniqueUniversité du HavreLe Havre CedexFrance
  2. 2.Institut-Non Linéaire de NiceUMR 129 CNRS-Université de NiceValbonneFrance

Personalised recommendations