Advertisement

Axial effects in the Taylor—Couette problem: Spiral—Couette and Spiral—Poiseuille flows

  • Álvaro Meseguer
  • Francesc Marqués
Conference paper
Part of the Lecture Notes in Physics book series (LNP, volume 549)

Abstract

A comprehensive study of the linear stability of the Taylor-Couette problem with imposed axial effects is examined. The study will be focused on two different flows: Spiral Couette (SCF) and Spiral Poiseuille (SPF) flows. In SCF flow, the axial effect is introduced by an inertial axial sliding mechanism between the cylinders. In the SPF, the axial effect is introduced via an imposed axial pressure gradient. For both problems, a wide range of parameters has been explored. In both systems, zeroth order discontinuities are found in the critical stability surface; they are explained as a result of the competition between the centrifugal and shear instability mechanisms, which appears only in the co-rotating case, close to the rigid body rotation region. In both problems, good agreement with the experimental results has been obtained.

Keywords

Linear Stability Linear Stability Analysis Critical Surface Critical Curve Neutral Stability Curve 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    M.E. Ali, P.D. Weidman: J. Fluid Mech., 220 53–84 (1990)zbMATHCrossRefADSGoogle Scholar
  2. 2.
    M.E. Ali, P.D. Weidman: Phys. Fluids A 5 1188–1200 (1993)zbMATHCrossRefADSGoogle Scholar
  3. 3.
    C. Canuto, M.Y. Hussaini, A. Quarteroni, T.A. Zang: Spectral Methods in Fluid Dynamics. (Springer Series in Computational Physics, 1988) 'Google Scholar
  4. 4.
    K. Chida, S. Sakaguchi, M. Wagatsuma, T. Kimura: Electronic Letters, 18, 713–715 (1982)CrossRefGoogle Scholar
  5. 5.
    P. Chossat, G. Iooss: The Couette-Taylor Problem. Applied Mathematical Sciences, 102, Springer-Verlag, New York (1994)Google Scholar
  6. 6.
    K. C. Chung & K. N. Astill: J. Fluid Mech. 81 641–655 (1977)zbMATHCrossRefADSGoogle Scholar
  7. 7.
    S.H. Davis & S. Rosenblat: Studies App. Math., 57, 59–76 (1977)ADSMathSciNetGoogle Scholar
  8. 8.
    W.S. Edwards, R.P. Tagg, B.C. Dornblaser, H.L. Swinney: Eur. J. Mech. B Fluids, 10, 205–210 (1991)Google Scholar
  9. 9.
    J.E. Hart: J. Fluid Mech., 47, 547–576 (1971)CrossRefADSGoogle Scholar
  10. 10.
    M. A. Hasoon and B. W. Martin: Proc. R. Soc. Lond. A, 352, 351–380 (1977)zbMATHADSCrossRefGoogle Scholar
  11. 11.
    H.C. Hu, R.E. Kelly: Phys. Rev. E, 51, 3242–3251 (1995)CrossRefADSGoogle Scholar
  12. 12.
    W.L. Hung, D.D. Joseph, B.R. Munson: J. Fluid Mech., 51, 593–612 (1972)zbMATHCrossRefADSGoogle Scholar
  13. 13.
    D. D. Joseph: Stability of Fluid Motions vol. I and II (Springer-Verlag, Berlin 1976)Google Scholar
  14. 14.
    H. Ludwieg: Z. Flugwiss, 12, 304–309 (1964)Google Scholar
  15. 15.
    I. Kiessling: Deutsche Versuchsanstalt für Luft-und Raumfahrt-Bericht 290 (1963)Google Scholar
  16. 16.
    P.A. Mackrodt: J. Fluid Mech., 73, 153–164 (1976)zbMATHCrossRefADSGoogle Scholar
  17. 17.
    F. Marques and J. M. Lopez: J. Fluid Mech., 348, 153–175 (1997)zbMATHCrossRefADSMathSciNetGoogle Scholar
  18. 18.
    G.B. McFadden, S.R. Coriell, B.T. Murray, M.E. Glicksman and M.E. Selleck: Phys. Fluids A2, 700–705 (1990)ADSGoogle Scholar
  19. 19.
    A. Meseguer: Bifurcations in Fluid Systems: Petrov-Galerkin Schemes. Thesis, Universitat Politécnica de Catalunya, Barcelona (1998)Google Scholar
  20. 20.
    A. Meseguer, F. Marques: J. Fluid Mech., 402, 33–56 (2000)zbMATHCrossRefADSMathSciNetGoogle Scholar
  21. 21.
    R.D. Moser, P. Moin, A. Leonard: J. Comput. Phys. 52, 524–544 (1983)zbMATHCrossRefADSMathSciNetGoogle Scholar
  22. 22.
    J.E. Mott, D.D. Joseph: Phys. Fluids 11, 2065–2073 (1968)zbMATHCrossRefADSGoogle Scholar
  23. 23.
    D.F. Ollis, E. Pelizzetti, N. Serpone: Environ. Sci. Technol., 25, 1523–1529 (1991)CrossRefGoogle Scholar
  24. 24.
    J. Sanchez, D. Crespo & F. Marques: App. Sci. Res., 51, 55–59 (1993)zbMATHCrossRefGoogle Scholar
  25. 25.
    D. I. Takeuchi & D. F. Jankowski: J. Fluid Mech. 102, 101–126 (1981)CrossRefADSGoogle Scholar
  26. 26.
    Z. Tadmor, R.B. Bird: Polymer Eng. and Sci., 14, 124–136 (1974)CrossRefGoogle Scholar
  27. 27.
    E. Wedemeyer: AVA-Bericht 67, A34 (1967)Google Scholar
  28. 28.
    A.Y. Weisberg, A. Smits & I. Kevrekidis: J. Fluid Mech., 348, 141–151 (1997)CrossRefADSMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2000

Authors and Affiliations

  • Álvaro Meseguer
    • 1
  • Francesc Marqués
    • 2
  1. 1.(Numerical Analysis Group)Oxford University Computing LaboratoryOxfordUK
  2. 2.(Departament de Física Aplicada)Universitat Politècnica de CatalunyaBarcelonaSpain

Personalised recommendations