Photorefractive Polymers and their Applications

  • Bernard Kippelen
  • Nasser Peyghambarian
Part of the Advances in Polymer Science book series (POLYMER, volume 161)


Photorefractive polymers exhibit large refractive index changes when exposed to low power laser beams. When the optical excitation consists of two interfering coherent beams, the periodic light distribution produces a periodic refractive index modulation. The resulting index change produces a hologram in the volume of the polymer film. The hologram can be reconstructed by diffracting a third laser beam on the periodic index modulation. In contrast to many physical processes that can be used to generate a refractive index change, the photorefractive effect is fully reversible, meaning that the recorded holograms can be erased with a spatially uniform light beam. This reversibility makes photorefractive polymers suitable for real-time holographic applications. The mechanism that leads to the formation of a photorefractive index modulation involves the formation of an internal electric field through the absorption of light, the generation of carriers, their transport and trapping over macroscopic distances. The resulting electric field produces a refractive index change through orientational or non-linear optical effects. Due to the transport process, the index modulation amplitude is phase shifted with respect to the periodic light distribution produced by the interfering optical beams that generate the hologram. This phase shift enables the coherent energy transfer between two beams propagating in a thick photorefractive material. This property, referred to as two-beam coupling, is used to build optical amplifiers. Hence, photorefractive materials are also playing a role in imaging applications. Discovered and studied for several decades mainly in inorganic crystals and semiconductors, the photorefractive effect has not yet found wide spread commercial applications.


Polymer Photorefractive Photoconductive Charge generation Carrier transport Electro-optics Orientational birefringence Kerr effect Real-time holography Interferometry Holographic storage Glass transition temperature Optical processing Four-wave mixing Two-beam coupling 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    NRC (1998) Harnessing light: optical science and engineering for the 21st century. National Research Council, Committee on Optical Science and Engineering. National Academy Press, WashingtonGoogle Scholar
  2. 2.
    Moerner WE, Grunnet-Jepsen A, Thompson CL (1997) Annu Rev Mater Sci 27:585CrossRefGoogle Scholar
  3. 3.
    Meerholz K, Kippelen B, Peyghambarian N (1998) In:Wise DL, Wnek GE, Trantolo DJ, Cooper TM, Gresser JD (eds) Photonic polymer systems. Marcel Dekker, New YorkGoogle Scholar
  4. 4.
    Kippelen B, Peyghambarian N (1997) In: Andrews MP, Najafi SI (eds) Sol-gel and polymer photonic devices, critical review of optical Science and technology. CR 68. SPIE Optical Engineering Press, BellinghamGoogle Scholar
  5. 5.
    Arfken G (1985) Mathematical methods for physicists. Academic Press, BostonGoogle Scholar
  6. 6.
    Born M, Wolf E (1980) Principles of optics. Pergamon Press, OxfordGoogle Scholar
  7. 7.
    Franken PA, Hill AE, Peters CW, Weinreich G (1961) Phys Rev Lett 7:118CrossRefGoogle Scholar
  8. 8.
    Bloembergen N (1964) Nonlinear optics. Benjamin, New YorkGoogle Scholar
  9. 9.
    Shen YR (1984) The principles of Nonlinear optics. Wiley, New YorkGoogle Scholar
  10. 10.
    Boyd RW (1992) Nonlinear optics. Academic Press, BostonGoogle Scholar
  11. 11.
    Yariv A (1975) Quantum electronics. Wiley, New YorkGoogle Scholar
  12. 12.
    Oudar JL, Chemla DS (1975) Opt Commun 13:164CrossRefGoogle Scholar
  13. 13.
    Chemla DS, Zyss J (1987) Nonlinear optical properties of organic molecules and crystals. Academic Press, OrlandoGoogle Scholar
  14. 14.
    Zyss J (1994) Molecular Nonlinear optics: materials, physics and devices. Academic Press, BostonGoogle Scholar
  15. 15.
    Kanis DR, Ratner MA (1994) Chem Rev 94:195CrossRefGoogle Scholar
  16. 16.
    Marder SR, Beratan, DN, Cheng LT (1991) Science 252:103CrossRefGoogle Scholar
  17. 17.
    Gorman CB, Marder SR (1993) ProcNatlAcad Sci USA 90:11,297Google Scholar
  18. 18.
    Meyers F, Marder SR, Pierce BM, Brédas JL (1994) J Am Chem Soc 116:10,703CrossRefGoogle Scholar
  19. 19.
    Marder SR, Kippelen B, Jen AKJ, Peyghambarian N (1997) Nature 388:845CrossRefGoogle Scholar
  20. 20.
    Williams DJ (1987) In: Chemla DS, Zyss J (eds) Nonlinear optical properties of organic molecules and crystals. Academic Press, New YorkGoogle Scholar
  21. 21.
    Singer KD, Kuzyk MG, Sohn JE (1987) J Opt Soc Am B 4:968CrossRefGoogle Scholar
  22. 22.
    Burland DM, Miller RD, Walsh CA (1994) Chem Rev 94:31CrossRefGoogle Scholar
  23. 23.
    Yu YZ, Wong KY, Garito AF (1997) In: Nalwa HS, Miyata S (eds) Nonlinear optics of organic molecules and polymers. CRC Press, Boca RatonGoogle Scholar
  24. 24.
    Wu JW(1991) J Opt Soc Am B 8:142Google Scholar
  25. 25.
    Ashkin A, Boyd GD, Dziedzic JM, Smith RG, Ballmann AA, Nassau K (1966) Appl Phys Lett 9:72CrossRefGoogle Scholar
  26. 26.
    Chen FS (1967) J Appl Phys 38:3418CrossRefGoogle Scholar
  27. 27.
    Chen FS (1969) J Appl Phys 40:3389CrossRefGoogle Scholar
  28. 28.
    Amodei JJ (1971) Appl Phys Lett 18:22CrossRefGoogle Scholar
  29. 29.
    Günter P (1982) Phys Rep 93:199CrossRefGoogle Scholar
  30. 30.
    Feinberg J (1983) In: Fisher RA (ed) Optical phase conjugation. Academic Press, New YorkGoogle Scholar
  31. 31.
    Günter P, Huignard JP (1988) (1989) Photorefractive materials and their applications, vols I and II. Springer, Berlin Heidelberg New YorkGoogle Scholar
  32. 32.
    Nolte DD (1995) Photorefractive effects and materials. Kluwer, BostonGoogle Scholar
  33. 33.
    Roosen G (1989) Int J Optoelectron 4:459Google Scholar
  34. 34.
    Nolte DD, Olson DH, Doran GE, Knox WH, Glass AM (1990) J Opt Soc Am B 7:2217Google Scholar
  35. 35.
    Wang Q, Nolte DD, Melloch MR (1991) Appl Phys Lett 59:256CrossRefGoogle Scholar
  36. 36.
    Sutter K, Günter P (1990) J Opt Soc Am B 7:2274Google Scholar
  37. 37.
    Ducharme S, Scott JC, Twieg RJ, Moerner WE (1991) Phys Rev Lett 66:1846CrossRefGoogle Scholar
  38. 38.
    Kukhtarev NV, Markov VB, Soskin M, Vinetskii VL (1979) Ferroelectrics 22:949Google Scholar
  39. 39.
    Yeh P (1993) Introduction to photorefractive Nonlinear optics. Wiley, New YorkGoogle Scholar
  40. 40.
    Schildkraut JS, Cui YJ (1992) J Appl Phys 72:5055CrossRefGoogle Scholar
  41. 41.
    Eichler HJ, Günter P, Pohl DW (1986) Laser-induced dynamic gratings. Springer, Berlin Heidelberg New YorkGoogle Scholar
  42. 42.
    Kogelnik H (1969) Bell Syst Tech J 48:2909Google Scholar
  43. 43.
    Moerner WE, Silence SM, Hache F, Bjorklund GC (1994) J Opt Soc Am B 11:320Google Scholar
  44. 44.
    Schildkraut JS (1990) Appl Phys Lett 58:340CrossRefGoogle Scholar
  45. 45.
    Tamura K, Padias AB, Hall HK Jr, Peyghambarian N (1992) Appl Phys Lett 60:1803CrossRefGoogle Scholar
  46. 46.
    Yu L, Chan W, Bao Z, Cao SXF (1993) Macromolecules 26:2216CrossRefGoogle Scholar
  47. 47.
    Donckers MCJM, Silence SM, Walsh CA, Scott JC, Matray TJ, Twieg RJ, Hache F, Bjorklund GC, Moerner WE (1993) Opt Lett 18:1044Google Scholar
  48. 48.
    Kippelen B, Sandalphon, Peyghambarian N, Lyon SR, Padias AB, Hall HK Jr (1993) Electron Lett 29:1873CrossRefGoogle Scholar
  49. 49.
    Meerholz K, Volodin B, Sandalphon, Kippelen B, Peyghambarian N (1994) Nature 371:497CrossRefGoogle Scholar
  50. 50.
    Cox AM, Blackburn RD, West DP, King TA, Wade FA, Leigh DA (1996) Appl Phys Lett 68:2801CrossRefGoogle Scholar
  51. 51.
    Hendrickx E, Volodin BL, Steele DD, Maldonado JL, Wang JF, Kippelen B, Peyghambarian N (1997) Appl Phys Lett 71:1159CrossRefGoogle Scholar
  52. 52.
    Hendrickx E, Herlocker J, Maldonado JL, Marder SR, Kippelen B, Persoons A, Peyghambarian N (1998) Appl Phys Lett 72:1679CrossRefGoogle Scholar
  53. 53.
    Law KY (1993) Chem Rev 93:449CrossRefGoogle Scholar
  54. 54.
    Borsenberger PM, Weiss DS (1993) Organic photoreceptors for imaging systems. Marcel Dekker, New YorkGoogle Scholar
  55. 55.
    Onsager L (1938) Phys Rev 54:554CrossRefGoogle Scholar
  56. 56.
    Mozumder A (1974) J Chem Phys 60:4300CrossRefGoogle Scholar
  57. 57.
    Mort J (1980) Adv Phys 29:367CrossRefGoogle Scholar
  58. 58.
    Scher H, Montroll EW (1975) Phys Rev B 12:2455CrossRefGoogle Scholar
  59. 59.
    Schmidlin SW (1977) Phys Rev B 16:2362CrossRefGoogle Scholar
  60. 60.
    Bässler H (1993) Adv Mat 5:662CrossRefGoogle Scholar
  61. 61.
    Borsenberger PM, Magin EH, Van der Auweraer M, De Schryver FC (1993) Phys Stat Sol (a) 140:9CrossRefGoogle Scholar
  62. 62.
    Borsenberger PM, Bässler H (1994) J Appl Phys 75:967CrossRefGoogle Scholar
  63. 63.
    Borsenberger PM, Detty MR, Magin EH (1994) Phys Stat Sol (b) 185:465CrossRefGoogle Scholar
  64. 64.
    Borsenberger PM, Magin EH, Van der Auweraer M, De Schryver FC (1994) Phys Stat Sol (b) 186:217CrossRefGoogle Scholar
  65. 65.
    Borsenberger PM, Gruenbaum WT, Magin EH (1995) Phys Stat Sol (b) 190:555CrossRefGoogle Scholar
  66. 66.
    Borsenberger PM, Shi J (1995) Phys Stat Sol (b) 191:461CrossRefGoogle Scholar
  67. 67.
    Borsenberger PM, Gruenbaum WT, Sorriero LJ, Zumbulyadis N (1995) Jpn J Appl Phys 34:L1597CrossRefGoogle Scholar
  68. 68.
    Borsenberger PM, Magin EH, O-Regan MB, Sinicropi JA (1996) J Polym Sci B Polym Phys 34:317CrossRefGoogle Scholar
  69. 69.
    Grunnet-Jepsen A, Wright D, Smith B, Bratcher MS, DeClue MS, Siegel JS, Moerner WE (1998) Chem Phys Lett 291:553CrossRefGoogle Scholar
  70. 70.
    Herlocker JA, Fuentes-Hernandez C, Ferrio KB, Hendrickx E, Zhang Y, Wang JF, Marder SR, Blanche PA, Peyghambarian N, Kippelen B (2000) Appl Phys Lett (in press)Google Scholar
  71. 71.
    Wortmann R, Poga C, Twieg RJ, Geletneky C, Moylan CR, Lundquist PM, DeVoe RG, Cotts PM, Horn H, Rice JE, Burland DM (1996) J Chem Phys 105:10,637CrossRefGoogle Scholar
  72. 72.
    Kippelen B, Meyers F, Peyghambarian N, Marder SR (1997) J Am Chem Soc 119:4559CrossRefGoogle Scholar
  73. 73.
    Kippelen B, Meerholz K, Peyghambarian N (1997) In: Nalwa HS, Miyata (eds) Nonlinear optics of organic molecules and polymers. CRC Press, Boca RatonGoogle Scholar
  74. 74.
    Zhang Y, Burzynski R, Ghosal S, Casstevens MK (1996) Adv Mater 8:111CrossRefGoogle Scholar
  75. 75.
    Meerholz K, De Nardin Y, Bittner R, Wortmann R, Würthner F (1998) Appl Phys Lett 73:4CrossRefGoogle Scholar
  76. 76.
    Wright D, Díaz-García MA, Casperson JD, De Clue M, Moerner WE, Twieg RJ (1998) Appl Phys Lett 73:1490CrossRefGoogle Scholar
  77. 77.
    Herlocker JA, Ferrio KB, Guenther BD, Mery S, Kippelen B, Peyghambarian N (1999) Appl Phys Lett 74:2253CrossRefGoogle Scholar
  78. 78.
    Zhang J, Singer KD (1998) Appl Phys Lett 72:2948CrossRefGoogle Scholar
  79. 79.
    Hendrickx E, Kippelen B, Thayumanavan S, Marder SR, Persoons A, Peyghambarian N (2000) J Chem Phys 112:9557CrossRefGoogle Scholar
  80. 80.
    Kippelen B, Marder SR, Hendrickx E, Maldonado JL, Guillemet G, Volodin B, Steele DD, Enami Y, Sandalphon, Yao YJ, Wang JF, Röckel H, Erskine L, Peyghambarian N (1998) Science 279:54CrossRefGoogle Scholar
  81. 81.
    Silence SM, Scott JC, Stankus JJ, Moerner WE, Moylan CR, Bjorklund GC, Twieg RJ (1995) J Phys Chem 99:4096CrossRefGoogle Scholar
  82. 82.
    Wortmann R, Poga C, Twieg RJ, Geletneky C, Moylan CR, Lundquist PM, DeVoe RG, Cotts PM, Horn H, Rice JE, Burland DM (1996) J Chem Phys 105:10,637CrossRefGoogle Scholar
  83. 83.
    Burzynski R, Zhang Y, Ghosal S, Casstevens MK (1995) J Appl Phys 78:6903CrossRefGoogle Scholar
  84. 84.
    Zhang Y, Ghosal S, Casstevens MK, Burzynski R (1995) Appl Phys Lett 66:256CrossRefGoogle Scholar
  85. 85.
    Okamoto K, Nomura T, Park SH, Ogino K, Sato H (1999) Chem Mater 11:3279CrossRefGoogle Scholar
  86. 86.
    Grunnet-Jepsen A, Thompson CL, Twieg RJ, Moerner WE (1997) Appl Phys Lett 70:1515CrossRefGoogle Scholar
  87. 87.
    Lundquist PM, Wortmann R, Geletneky C, Twieg RJ, Jurich M, Lee VY, Moylan CR, Burland DM (1996) Science 274:1182CrossRefGoogle Scholar
  88. 88.
    Wang L, Zhang Y, Wada T, Sasabe H (1996) Appl Phys Lett 69:728CrossRefGoogle Scholar
  89. 89.
    Schloter S, Schreiber A, Grasruck M, Leopold A, Kol’chenko M, Pan J, Hohle C, Strohriegl P, Zilker SJ, Haarer D (1999) Appl Phys B 68:899CrossRefGoogle Scholar
  90. 90.
    Hohle C, Hofmann U, Schloter S, Thelakkat M, Strohriegl P, Haarer D, Zilker SJ (1999) J Mater Chem 9:2205CrossRefGoogle Scholar
  91. 91.
    Kippelen B, Tamura K, Peyghambarian N, Padias AB, Hall HK Jr (1993) Phys Rev B 48:10,710CrossRefGoogle Scholar
  92. 92.
    Zhao C, Park CK, Prasad PN, Zhang Y, Ghosal S, Burzynski R (1995) Chem Mater 7:1237CrossRefGoogle Scholar
  93. 93.
    Yu L, Chen YM, Chan WK (1995) J Phys Chem 99:2797CrossRefGoogle Scholar
  94. 94.
    Li L, Chittibabu KG, Chen Z, Chen JI, Marturunkakul S, Kumar J, Tripathy SK (1996) Opt Commun 125:257CrossRefGoogle Scholar
  95. 95.
    Burzynski R, Casstevens MK, Zhang Y, Ghosal S (1996) Opt Eng 35:443CrossRefGoogle Scholar
  96. 96.
    Chaput F, Riehl D, Boilot JP, Cargnelli K, Canva M, Levy Y, Brun A (1996) Chem Mater 8:312CrossRefGoogle Scholar
  97. 97.
    Winiarz JG, Zhang L, Lal M, Friend CS, Prasad PN (1999) J Am Chem Soc 121:5287CrossRefGoogle Scholar
  98. 98.
    Rudenko EV, Sukhov AV (1994) JETP Lett 59:142Google Scholar
  99. 99.
    Khoo IC, Li H, Liang Y (1994) Opt Lett 19:1723Google Scholar
  100. 100.
    Wiederrecht GP, Yoon BA, Wasielewski MR (1995) Science 270:1794CrossRefGoogle Scholar
  101. 101.
    Wiederrecht GP, Wasielewski MR (1998) J Am Chem Soc 120:3231CrossRefGoogle Scholar
  102. 102.
    Golemme A, Volodin BL, Kippelen B, Peyghambarian N (1997) Opt Lett 22:1226CrossRefGoogle Scholar
  103. 103.
    Ono H, Kawatsuki N (1997) Opt Lett 22:1144CrossRefGoogle Scholar
  104. 104.
    Golemme A, Kippelen B, Peyghambarian N (1998) Appl Phys Lett 73:2408CrossRefGoogle Scholar
  105. 105.
    Volodin BL, Sandalphon, Kippelen B, Kukhtarev NV, Peyghambarian N (1995) Opt Eng 34:2213CrossRefGoogle Scholar
  106. 106.
    Poga C, Lundquist PM, Lee V, Shelby RM, Twieg RJ, Burland DM (1996) Appl Phys Lett 69:1047CrossRefGoogle Scholar
  107. 107.
    Lundquist PM, Poga C, DeVoe RG, Jia Y, Moerner WE, Bernal MP, Coufal H, Grygier RK, Hoffnagle JA, Jefferson CM, Macfarlane RM, Shelby RM, Sincerbox GT (1996) Opt Lett 21:890Google Scholar
  108. 108.
    Volodin BL, Kippelen B, Meerholz K, Peyghambarian N, Kukhtarev NV, Caulfield HJ (1996) J Opt Soc Am B 13:2261CrossRefGoogle Scholar
  109. 109.
    Volodin BL, Kippelen B, Meerholz K, Javidi B, Peyghambarian N (1996) Nature 383:58CrossRefGoogle Scholar
  110. 110.
    Grunnet-Jepsen A, Thompson CL, Moerner WE (1997) Science 277:549CrossRefGoogle Scholar
  111. 111.
    Grunnet-Jepsen A,T hompson CL, Moerner WE (1997) Mat Res Soc Symp Proc 479:199Google Scholar
  112. 112.
    Grunnet-Jepsen A, Thompson CL, Twieg RJ, Moerner WE (1998) J Opt Soc Am B 15:901CrossRefGoogle Scholar
  113. 113.
    Meerholz K, Bittner R, De Nardin Y (1998) Opt Commun 150:205CrossRefGoogle Scholar
  114. 114.
    Steele DD, Volodin BL, Savina O, Kippelen B, Peyghambarian N (1998) Opt Lett 23:153CrossRefGoogle Scholar
  115. 115.
    Klein MB, Bacher GD, Grunnet-Jepsen A, Wright D, Moerner WE (1999) SPIE 3589:22CrossRefGoogle Scholar
  116. 116.
    Goonesekera A, Wright D, Moerner WE (2000) Appl Phys Lett 76:3358CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2003

Authors and Affiliations

  • Bernard Kippelen
    • 1
  • Nasser Peyghambarian
    • 1
  1. 1.Optical Sciences CenterThe University of ArizonaTucsonUSA

Personalised recommendations