Aspects of Iceberg Deterioration and Drift

  • S.B. Savage
Part of the Lecture Notes in Physics book series (LNP, volume 582)


During her maiden voyage from Southampton to New York, the ocean liner RMS Titanic struck an iceberg off the Newfoundland Banks and sank on April 15, 1912. Of the 2228 passengers and crew on board, only 705 survived. This tragedy generated a public outcry that subsequently provoked government action. Representatives of the world’s various maritime powers signed a convention in 1914 to inaugurate an international derelict-destruction, ice observation, and ice patrol service. Today, the International Ice Patrol (IIP) is comprised of 17 member national organizations (including Belgium, Canada, Denmark, Finland, France, Germany, Greece, Italy, Japan, Netherlands, Norway, Panama, Poland, Spain, Sweden, the United Kingdom, and the United States of America). Its mission is “to monitor the extent of the iceberg danger near the Grand Banks of Newfoundland and provide limits of all known ice to the maritime community”. In addition to participation in the IIP, several countries have their own independent organizations that keep track of individual iceberg positions, trajectories, size and melt decay in Northern waters. Typically, this is accomplished through the use of satellites (RADARSAT), aerial reconnaissance making use of Side-Looking Airborne Radar (SLAR) and Forward-Looking Airborne Radar (FLAR), as well as observations from commercial shipping.


Nusselt Number Deterioration Mechanism Wave Erosion Water Drag Large Iceberg 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    S. Hotzel, J. Miller: Annals of Glaciology 4, 116–123 (1983)ADSGoogle Scholar
  2. 2.
    R.Q. Robe: ‘Height to draft ratios of icebergs’. In: POAC 75: Proceedings of the Third International Conference on Port and Ocean Engineering under Arctic Conditions, Fairbanks, Alaska, 1975, Vol. 1, 407–415 (1976)Google Scholar
  3. 3.
    G.B. Crocker, A.B. Cammaert: ‘Measurements of bergy bit and growler populations off Canada’s East Coast’. In: Proc. of IAHR Ice Symposium, Trondheim, Norway, August 23–26, 1994, Vol. 1, 167–176 (1994)Google Scholar
  4. 4.
    S. Venkatesh, M. El-Tahan: Cold Regions Sci. Technol. 15, 1–11 (1988)CrossRefGoogle Scholar
  5. 5.
    D.G. Mountain: Cold Regions Sci. Technol. 1, 273–282 (1980)CrossRefGoogle Scholar
  6. 6.
    S.D. Smith, N.R. Donaldson: Dynamic modeling of iceberg drift using current profiles. Canadian Technical Report of Hydrography and Ocean Sciences No. 91, Bedford Institute of Oceanography, Dartmouth, Nova Scotia, October 1987 (1987)Google Scholar
  7. 7.
    M. Sayed: Implementation of iceberg drift and deterioration model. Technical Report HYD-TR-049, March 2000, Canadian Hydraulics Centre, National Research Council Canada, Ottawa, Canada 39 pp. (2000)Google Scholar
  8. 8.
    M. El-Tahan, S. Venkatesh, H. El-Tahan: J. Offshore Mech. Arctic Eng. 109, 102–108 (1987)CrossRefGoogle Scholar
  9. 9.
    J.C. Job: J. Glaciology 20, 533–542 (1978)ADSGoogle Scholar
  10. 10.
    R.C. Kollmeyer: Iceberg deterioration. Report No. 11, U.S. Coast Guard, Washington, D.C. 41–64 (1965)Google Scholar
  11. 11.
    R.Q. Robe, D.C. Maier, R.C. Kollmeyer: Nature 267, 505–506 (1977)CrossRefADSGoogle Scholar
  12. 12.
    Fenco Newfoundland Ltd.: Ice and environmental surveillance offshore Labrador. Operations Report for Petro-Canada Exploration Inc. (1980)Google Scholar
  13. 13.
    B. DeJong: Net Radiation Received by a Horizontal Surface at the Earth (Delft University Press, Groningen 1973)Google Scholar
  14. 14.
    E.G. Josberger: ‘A laboratory and field study of iceberg deterioration’. In: Proc. First Intern. Conf. on Iceberg Utilization, ed. by A.A. Husseiny (Pergamon Press, New York 1977) pp. 245–264Google Scholar
  15. 15.
    F.M. White, M.L. Spaulding, L. Gominho: Theoretical estimates of the various mechanisms involved in iceberg deterioration in the open ocean environment. U.S. Coast Guard Report No. CG-D-62-80. 126 pp. (1980)Google Scholar
  16. 16.
    B. Gebhart, J.C. Mollendorf: J. Fluid Mech. 80, 637–707 (1978)Google Scholar
  17. 17.
    S. Neshyba, E.G. Josberger: ‘On the estimation of Antarctic iceberg melt rate’. In: Iceberg Dynamics Symposium, St. John’s, Newfoundland, June 4–5, 1979 (1979)Google Scholar
  18. 18.
    R. Hilpert: Wärmeabgabe von geheizten Drähten und Rohren. Forsch. Geb. Ingenieurwes 4, 215 (1933)CrossRefGoogle Scholar
  19. 19.
    A. Zhukaukas: ‘Heat transfer from tubes in cross flow’. In: Advances in Heat Transfer, 8, ed. by J.P. Hartnett and T.F. Irvine, Jr., (Academic Press, New York 1972)Google Scholar
  20. 20.
    E. Achenbach: ‘Heat transfer from spheres up to Re = 6× 106’. In: Proc. 6th Int. Heat Transfer Conf. Vol. 5 (Hemisphere, Washington, D.C. 1978)Google Scholar
  21. 21.
    S. Venkatesh, D.L. Murphy, G.F. Wright: Atmosphere-Ocean 32, 469–484 (1994)Google Scholar
  22. 22.
    G.B. Crocker, G. English: Verification and implementation of a methodology for predicting bergy bit and growler populations. Contract Report prepared for Ice Services, Environment Canada, C-Core Contract 97-C13, 46 pp. (1997)Google Scholar
  23. 23.
    S.B. Savage, G.B. Crocker, M. Sayed, T. Carrieres: J. Geophys. Res.— Oceans (accepted for publication) (2001)Google Scholar
  24. 24.
    H.L. Langhaar: Dimensional Analysis and the Theory of Models (Wiley, New York 1951)Google Scholar
  25. 25.
    Mobile Oil Canada, Ltd.: Hibernia Development Project, Environmental impact statement. Vol. IIIa, Biophysical assessment (1985)Google Scholar
  26. 26.
    Fenco Newfoundland Ltd.: Husky/Bow Valley East Coast Project, Environmental Data Archive, 1984-87. Vol. 1, Summary Report (1987)Google Scholar
  27. 27.
    S.B. Savage, M. Sayed, G.B. Crocker, T. Carrieres: Cold Regions Sci. Technol. 31, 163–172 (2000)CrossRefGoogle Scholar
  28. 28.
    G.B. Crocker: Cold Regions Sci. & Techn. 22, 113–119 (1993)CrossRefGoogle Scholar
  29. 29.
    D. Diemand, W. Nixon, J. Lever: ‘On the splitting of icebergs— natural and induced’. In: Proc. of the 6th Conference on Offshore Mechanics and Arctic Engineering, Houston, Texas, Vol. 4, 379–385 (1987)Google Scholar
  30. 30.
    J. Lever, D. Bass, C. Lewis, K. Klein, D. Diemand: ‘Iceberg seabed interaction events observed during the DIGSexp eriment’. In: Proc. of the 8th Conference on Offshore Mechanics and Arctic Engineering, The Hague, Vol. 4, 205–220 (1989)Google Scholar
  31. 31.
    W. Weibull: J. Applied Mech. 18, 293–297 (1951)zbMATHGoogle Scholar
  32. 32.
    J.A. Dowdeswell, C.F. Forsberg: Polar Research, 11, 81–91, (1992)CrossRefGoogle Scholar
  33. 33.
    J.J. von Schwind: Geophysical Fluid Dynamics for Oceanographers (Prentice-Hall, New York 1980)Google Scholar
  34. 34.
    S.B. Savage, M. Sayed, G.B. Crocker, T. Carrieres: ‘Overview of a new operational iceberg prediction model’. In: Proceedings of the 10th International Offshore and Polar Engineering Conference, ISOPE 2000, Seattle, Washington, May 28–June 2, 2000 (2000)Google Scholar
  35. 35.
    J.R. Marko, D.B. Fissel, J.D. Miller: ‘Iceberg movement prediction off the Canadian East coast’. In: Natural and Man-Made Hazards, ed. by M.I. El-Sabh, T.S. Murty (D. Reidel Publishing Co. 1988) pp. 435–462Google Scholar
  36. 36.
    S. de Margerie, J. Middleton, C. Garrett, S. Marquis, F. Majaess, K. Lank: An operational iceberg trajectory forecasting model for the Grand Banks. ASA Consulting Ltd., Dartmouth, Nova Scotia, Canada. Report No. 052, Environmental Studies Revolving Funds, 95 pp. (1986)Google Scholar
  37. 37.
    C.J.R. Garrett: Cold Regions Sci. Technol. 11, 255–266 (1985)CrossRefGoogle Scholar
  38. 38.
    C.J.R. Garrett, J. Middleton, M. Hazen, F. Majaess: Science 227, 1333–1335 (1985)CrossRefADSGoogle Scholar
  39. 39.
    H.S. Gaskill, J. Rochester: Cold Regions Sci. Technol. 8, 223–234 (1984)CrossRefGoogle Scholar
  40. 40.
    M. Moore: Cold Regions Sci. Technol. 14, 263–272 (1987)CrossRefGoogle Scholar
  41. 41.
    E.G. Banke, S.D. Smith: A hindcast study of iceberg drift on the Labrador coast. Canadian Technical Report of Hydrography and Ocean Sciences, No. 49, 161 pp. (1984)Google Scholar
  42. 42.
    G.R. Bigg, M.R. Wadley, D.P. Stevens, J.A. Johnson: Cold Regions Sci. Technol. 113–135 (1997)Google Scholar
  43. 43.
    M. El-Tahan, H.W. El-Tahan, S. Venkatesh: ‘Forecast of iceberg ensemble drift’. In: Proc. Annual Offshore Technology Conference, OTC Paper No. 4460, Houston, Texas, May 2–5, 1983, pp. 151–158 (1983)Google Scholar
  44. 44.
    D.L. Murphy, Lt.I. Anderson: ‘An evaluation of the International Ice Patrol drift model’. In: Proc. of the Canadian East Coast Workshop on Sea Ice, January 1986, Canadian Tech. Report of Hydrography and Ocean Sciences No. 73, G. Symonds, I.K. Peterson (1986)au]45._S.D. Smith, E.G. Banke: Cold Regions Sci. Technol. 6, 241-255 (1983)Google Scholar
  45. 46.
    S.D. Smith, N.R. Donaldson: ‘Innovations in dynamic modeling of iceberg drift’. In: Proc. IEEE, Oceans 87, Halifax, September 28–October 1, 1987, 5–10 (1987)Google Scholar
  46. 47.
    S.D. Smith: Cold Regions Sci. Technol. 22, 34–45 (1993)CrossRefGoogle Scholar
  47. 48.
    D.S. Sodhi, M. El-Tahan: Annals of Glaciology 1, 77–82 (1980)ADSGoogle Scholar
  48. 49.
    M.S. Longuet-Higgins, R.W. Stewart: Deep Sea Research 11, 529–562 (1964)Google Scholar
  49. 50.
    O.M. Phillips: Dynamics of the upper ocean (Cambridge University Press, Cambridge 1966)zbMATHGoogle Scholar
  50. 51.
    R.M. Sorensen: Basic wave mechanics for coastal and ocean engineers (Wiley, 1993)Google Scholar
  51. 52.
    M.S. Longuet-Higgins: Proc. R. Soc. A 352, 463–480 (1977)CrossRefADSGoogle Scholar
  52. 53.
    H. Maruo: J. Ship Research December 4, No. 3, 1–10 (1960)Google Scholar
  53. 54.
    K. Kudou: J. Soc. Naval Arch., Japan 141, 71–77 (1977)Google Scholar
  54. 55.
    M. Isaacson: ‘Influence of wave drift force on ice mass motions.’ In: Proc. Seventh Intern. Conf. on Offshore Mechanics and Arctic Engineering, Houston, Texas, February 7–12, 1988 (ASME, New York 1988) pp. 125–130Google Scholar
  55. 56.
    M. Isaacson, K. McTaggart: Can. J. Civil Eng. 17, 329–337 (1990)CrossRefGoogle Scholar
  56. 57.
    Meteorological Office: Marine Observer’s Handbook, 9th ed. (HMSO, London 1969)Google Scholar
  57. 58.
    A.E. Gill: Atmosphere-Ocean Dynamics (Academic Press, New York 1982)CrossRefGoogle Scholar
  58. 59.
    J.N. Newman: Marine Hydrodynamics (MIT Press, Cambridge 1978)Google Scholar
  59. 60.
    S.F. Hoerner: Fluid Dynamic Drag (Published by the author, New York 1965)Google Scholar
  60. 61.
    E.G. Banke, S.D. Smith: ‘Measurements of towing drag on small icebergs’. In: Proc. IEEE, Oceans 74, International Conference on Engineering in the Ocean Environment, Halifax, Canada, Vol. 1, pp. 130–132 (1974)Google Scholar
  61. 62.
    J.E. Chirivella, C.G. Miller: ‘Hydrodynamics of icebergs in transit’. In: Proc. of the First Conference on Iceberg Utilization for Freshwater Production, ed. by A.A. Husseiny, Iowa State University, 315–333 (1978)Google Scholar
  62. 63.
    W.H. Press, B.P. Flannery, S.A. Teukolsky, W.T. Vetterling: Numerical Recipes, The Art of Scientific Computing, 2nd Ed.. (Cambridge Univ. Press, Cambridge 1994)Google Scholar
  63. 64.
    L.F. Shampine, M.W. Reichelt: SIAM Journal on Scientific Computing 18, 1–22 (1997)zbMATHCrossRefMathSciNetGoogle Scholar
  64. 65.
    H.H. Rosenbrock: Comput. J. 5, 329–330 (1963)zbMATHCrossRefMathSciNetGoogle Scholar
  65. 66.
    E. Hairer, G. Wanner: Solving Ordinary Differential Equations II. Stiff and Differential-Algebraic Problems (Springer-Verlag, Berlin 1991)zbMATHGoogle Scholar
  66. 67.
    A. Sandu, J.G. Verwer, J.G. Blom, E.J. Spee, G.R. Carmichael: Benchmarking stiff ODE solvers for atmospheric chemistry problems, II: Rosenbrock solvers. Centrum voor Wiskunde en Informatica (CWI), National Institute for Mathematics and Computer Science, Netherlands, Department of Numerical Mathematics, Report NM-R9614, 20 pp. (1996)Google Scholar
  67. 68.
    T. Steihaug, A. Wolfbrandt: Math. Comp. 33, 521–534 (1979)zbMATHCrossRefMathSciNetGoogle Scholar
  68. 69.
    S.B. Savage: Numerical integration schemes for iceberg drift and deterioration code. Technical Report 2000-02, Contract KM149-9-85-051 for Canadian Ice Service, Ottawa, March 31, 2000, 49 pp. (2000)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2001

Authors and Affiliations

  • S.B. Savage
    • 1
  1. 1.McGill UniversityMontreal, QuebecCanada

Personalised recommendations