Snow Avalanches

  • C. Ancey
Part of the Lecture Notes in Physics book series (LNP, volume 582)


Over the last century, mountain ranges in Europe and North America have seen substantial development due to the increase in recreational activities, transportation, construction in high altitude areas, etc. In these mountain ranges, avalanches often threaten man’s activities and life. Typical examples include recent disasters, such as the avalanche at Val d’Isère in 1970 (39 people were killed in a hostel) or the series of catastrophic avalanches throughout the Northern Alps in February 1999 (62 residents killed). The rising demand for higher safety measures has given new impetus to the development of mitigation technology and has given rise to a new scientific area entirely devoted to snow and avalanches. This paper summarises the paramount features of avalanches (formation and motion) and outlines the main approaches used for describing their movement. We do not tackle specific problems related to snow mechanics and avalanche forecasting. For more information on the subject, the reader is referred to the main textbooks published in Alpine countries [1],[2],[3],[4],[5],[6],[7],[8].


Richardson Number Gravity Current Turbidity Current Snow Avalanche Momentum Balance Equation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    A. Roch: Neve e Valanghe (Club Alpino Italiano, Torino 1980)Google Scholar
  2. 2.
    C. Ancey: Guide Neige et Avalanches: Connaissances, Pratiques, Sécurité, 2nd edn. (Edisud, Aix-en-Provence 1998)Google Scholar
  3. 3.
    W. Amman, O. Buser, U. Vollenwyder: Lawinen (Birhäuser, Basel 1997)Google Scholar
  4. 4.
    D.M. McClung, P.A. Schaerer: The avalanche handbook (The Montaineers, Seattle 1993)Google Scholar
  5. 5.
    T. Daffern: Avalanche Safety for Skiers & Climbers (Rocky Mountain Books, Calgary 1992)Google Scholar
  6. 6.
    W. Munter: Lawinen, entscheiden in kritischen Situationen (Agentur Pohl und Schellhammer, Garmisch Partenkirchen 1997)Google Scholar
  7. 7.
    R. de Quervain: Avalanche Atlas (Unesco, Paris 1981)Google Scholar
  8. 8.
    A.I. Mears: Snow-avalanche hazard analysis for land-use planning and Engineering. Bulletin 49 (Colorado Geological Survey, Denver 1992)Google Scholar
  9. 9.
    K.J. Hsü: ‘Albert Heim: observations on landslides and relevance to modern interpretations’. In: Rockslides and avalanches, ed. By B. Voight (Elsevier, Amsterdam 1978) pp. 71–93Google Scholar
  10. 10.
    S.B. Savage: ‘Flow of granular materials’. In: Theoretical and Applied Mechanics, ed. by P. Germain, J.-M. Piau, D. Caillerie (Elsevier, Amsterdam 1989) pp. 241–266Google Scholar
  11. 11.
    R. Perla, T.T. Cheng, D.M. Mc Clung: J. Glaciol. 26, 197 (1980)ADSGoogle Scholar
  12. 12.
    E.J. Hopfinger: Ann. Rev. Fluid Mech. 15, 45 (1983)CrossRefADSGoogle Scholar
  13. 13.
    K. Harbitz: ‘A survey of computational models for snow avalanche motion’. In: Final report of A valanche Mapping, Model Validation and Warning Systems, (Fourth European Framework Programme, ENV4-CT96-0258, Brussels 1999)Google Scholar
  14. 14.
    D.M. McClung, K. Lied: Cold Reg. Sci. Technol. 13, 107 (1987)CrossRefGoogle Scholar
  15. 15.
    K. Lied, S. Bakkehøi: J. Glaciol. 26, 165 (1980)ADSGoogle Scholar
  16. 16.
    K. Lied, R. Toppe: Ann. Glaciol. 13, 164 (1989)ADSGoogle Scholar
  17. 17.
    B. Salm, A. Burkard, H. Gubler: Berechnung von Fliesslawinen, eine Anleitung für Praktiker mit Beispielen. Report 47 (EISFL, Davos 1990)Google Scholar
  18. 18.
    H. Lagotala: Etude de l’avalanche des Pélerins (Chamonix) (Société Générale d’Imprimerie, Genève 1927)Google Scholar
  19. 19.
    J.-C. Tochon-Danguy, E.J. Hopffnger: “Simulation of the dynamics of powder avalanches”. In: International symposium on snow mechanics, Grindelwald, 1974, IAHS Publication 144 (IAHS 1974) pp. 369–380Google Scholar
  20. 20.
    P. Beghin, E.J. Hopffnger, R.E. Britter: J. Fluid Mech. 107, 407 (1981)CrossRefADSGoogle Scholar
  21. 21.
    Y. Fukushima, G. Parker: J. Glaciol. 36, 229 (1990)ADSGoogle Scholar
  22. 22.
    J. Akiyama, M. Ura: J. Hydraul. Eng. ASCE 125, 474 (1999)CrossRefGoogle Scholar
  23. 23.
    N. Bozhinskiy, K.S. Losev: The fundamentals of avalanche science. Report 55 (EISLF, Davos 1998)Google Scholar
  24. 24.
    J.S. Turner: Buoyancy effects in fluids (C. U. P., Cambridge 1973)zbMATHGoogle Scholar
  25. 25.
    J.S. Turner: J. Fluid Mech. 173, 431 (1986)CrossRefADSGoogle Scholar
  26. 26.
    G. Parker, M. Garcia, Y. Fukushima, W. Yu: J. Hydr. Res. 25, 123 (1987)CrossRefGoogle Scholar
  27. 27.
    R.E. Britter, P.F. Linden: J. Fluid Mech. 99, 531 (1980)CrossRefADSGoogle Scholar
  28. 28.
    G.K. Batchelor: An introduction to fluid dynamics (C. U. P., Cambridge 1967)zbMATHGoogle Scholar
  29. 29.
    H.E. Huppert, J.E. Simpson: J. Fluid Mech. 99, 785 (1980)CrossRefADSGoogle Scholar
  30. 30.
    T.B. Benjamin: J. Fluid Mech. 31, 209 (1968)zbMATHCrossRefADSGoogle Scholar
  31. 31.
    R.E. Britter, J.E. Simpson: J. Fluid Mech. 88, 223 (1978)CrossRefADSGoogle Scholar
  32. 32.
    J.W. Rottman, J.E. Simpson: J. Fluid Mech. 135, 95 (1983)CrossRefADSGoogle Scholar
  33. 33.
    J.E. Simpson, R.E. Britter: J. Fluid Mech. 94, 477 (1979)CrossRefADSGoogle Scholar
  34. 34.
    P. Beghin, X. Olagne: Cold Reg. Sci. Technol. 19, 317 (1991)CrossRefGoogle Scholar
  35. 35.
    Y. Fukushima, N. Hayakawa: J. Hydraul. Eng. ASCE 121, 600 (1995)CrossRefGoogle Scholar
  36. 36.
    M.A. Hallworth, A. Hogg, H.E. Huppert: J. Fluid Mech. 359, 109 (1998)zbMATHCrossRefADSGoogle Scholar
  37. 37.
    R.T. Bonnecaze, M.A. Hallworth, H.E. Huppert, J.R. Lister: J. Fluid Mech. 294, 93 (1995)CrossRefADSGoogle Scholar
  38. 38.
    R.T. Bonnecaze, H.E. Huppert, J.R. Lister: J. Fluid Mech. 250, 339 (1993)CrossRefADSGoogle Scholar
  39. 39.
    L. Hatcher, A. Hogg, A.W. Woods: J. Fluid Mech. 416, 297 (2000)zbMATHCrossRefADSGoogle Scholar
  40. 40.
    H.P. Gröbelbauer, T.K. Fanneløp, R.E. Britter: J. Fluid Mech. 250, 669 (1993)CrossRefADSGoogle Scholar
  41. 41.
    M. Eglit: ‘Mathematical modeling of dense avalanches’. In: 25 years of snow avalanche research, Voss 1998, ed. by E. Hestnes (Norwegian Geotechnical Institute, 1998) pp. 15–18Google Scholar
  42. 42.
    E.M. Eglit: ‘Some mathematical models of snow avalanches’. In: Advances in the mechanics and the flow of granular materials, ed. by M. Shahinpoor (Trans Tech Publications, 1983 of Conference) pp. 577–588Google Scholar
  43. 43.
    G. Brugnot, R. Pochat: J. Glaciol. 27, 77 (1981)ADSGoogle Scholar
  44. 44.
    J.P. Vila: Sur la théorie et l’approximation numérique des problèmes hyperboliques non linéaires, application aux équations de Saint-Venant et à la modélisation des avalanches denses. Ph.D. Thesis, University Paris VI (1986)Google Scholar
  45. 45.
    G. Parker, Y. Fukushima, H.M. Pantin: J. Fluid Mech. 171, 145 (1986)zbMATHCrossRefADSGoogle Scholar
  46. 46.
    G.B. Whitham: Linear and nonlinear waves, 2nd edn. (Wiley, New York 1999)zbMATHGoogle Scholar
  47. 47.
    E.F. Toro: Riemann solvers and numerical methods for fluid dynamics (Springer, Berlin 1997)zbMATHGoogle Scholar
  48. 48.
    S.B. Savage, K. Hutter: Acta Mech. 86, 201 (1991)zbMATHCrossRefMathSciNetGoogle Scholar
  49. 49.
    J.-M. Piau: J. Rheol. 40, 711 (1996)CrossRefMathSciNetADSGoogle Scholar
  50. 50.
    V.T. Chow: Open-channel Hydraulics (Mc Graw Hill, New York 1959)Google Scholar
  51. 51.
    M. Wieland, J.M.N.T. Gray, K. Hutter: J. Fluid Mech. 392, 73 (1999)zbMATHCrossRefADSGoogle Scholar
  52. 52.
    J.E. Simpson: J. Fluid Mech. 53, 759 (1972)CrossRefADSGoogle Scholar
  53. 53.
    C. Hötel, E. Meiburg, F. Necker: J. Fluid Mech. 418, 189 (2000); ibid 213CrossRefMathSciNetADSGoogle Scholar
  54. 54.
    D. Snyder, S. Tait: J. Fluid Mech. 369, 1 (1998)zbMATHMathSciNetADSGoogle Scholar
  55. 55.
    J.D. Dent, T.E. Lang: Ann. Glaciol. 4, 42(1983)ADSGoogle Scholar
  56. 56.
    O. Maeno: ‘Rheological characteristics of snow flows’. In: International Workshop on Gravitational Mass Movements, Grenoble 1993, ed. by L. Buisson (Cemagref 1993) pp. 209–220Google Scholar
  57. 57.
    S.B. Savage, K. Hutter: J. Fluid Mech. 199, 177 (1989)zbMATHCrossRefMathSciNetADSGoogle Scholar
  58. 58.
    K. Hutter, T. Koch, C. Plüss, S.B. Savage: Acta Mech. 109, 127 (1995)CrossRefMathSciNetGoogle Scholar
  59. 59.
    K. Hutter, M. Siegel, S.B. Savage, Y. Nohguchi: Acta Mech. 100, 37 (1993)zbMATHCrossRefMathSciNetGoogle Scholar
  60. 60.
    C. Ancey, M. Naaim: ‘Modelisation of dense avalanches’. In: Université européenne d’été sur les risques naturels, Chamonix 1992, ed. by G. Brugnot (Cemagref, Antony 1995) pp. 173–182Google Scholar
  61. 61.
    G.K. Batchelor: ‘A brief guide to two-phase flow‘. In: Theoretical and Applied Mechanics, ed. by P. Germain, J.M. Piau, D. Caillerie (Elsevier, Amsterdam 1989) pp 27–41Google Scholar
  62. 62.
    P. Gauer: ‘A model of powder snow avalanche’. In: Les apports de la recherche scienti fique à la sécurité neige, glace et avalanche, Chamonix 1995, ed. by F. Sivardière(Cemagref, 1995), pp. 55–61Google Scholar
  63. 63.
    D. Issler: Ann. Glaciol. 26, 253 (1998)ADSGoogle Scholar
  64. 64.
    M. Naaim, I. Gurer: J. Natural Hazard 16, 18 (1997)Google Scholar
  65. 65.
    T. Scheiwiller, K. Hutter, F. Hermann: Ann. Geophys. 5B, 569 (1987)Google Scholar
  66. 66.
    F. Hermann, D. Issler, S. Keller: ‘Numerical simulations of powder-snow avalanches and laboratory experiments in turbidity currents’. In: International Workshop on Gravitational Mass Movements, Grenoble, 1993, ed. by L. Buisson (Cemagref 1993) pp. 137–144Google Scholar
  67. 67.
    E.J. Hopfinger, J.-C. Tochon-Danguy: J. Glaciol. 81, 343 (1977)Google Scholar
  68. 68.
    T. Chu: Can. Geotech. J. 32, 285 (1995)CrossRefGoogle Scholar
  69. 69.
    K.M. Hàkonardóttir: Retarding effects of breaking mounds-avalanches. MA dissertation, University of Bristol, Bristol (2000)Google Scholar
  70. 70.
    J.D. Dent, K.J. Burrell, D.S. Schmidt, M.Y. Louge, E.E. Adams, T.G. Jazbutis: Ann. Glaciol. 26, 243 (1998)ADSGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2001

Authors and Affiliations

  • C. Ancey
    • 1
  1. 1.Cemagref, unité Erosion Torrentielle, Neige et AvalanchesDomaine UniversitaireSain t-Martin-d’Hères CedexFrance

Personalised recommendations