16 Invitation to Sediment Transport

  • G. Seminara
Part of the Lecture Notes in Physics book series (LNP, volume 582)


As stated in [12] the mechanical system analyzed in morphodynamics ‘....consists of a low concentration two phase mixture of water and sediment particles subject to a free surface flow bounded by a granular medium. Flow of water also occurs very slowly through the interstices of the granular medium: however such a weak filtration process may be safely ignored. The interface between flowing mixture and granular medium can move as a result of a continuous exchange of sediment particles. The general problem of morphodynamics may then be stated as that of determining the motion of the above interface for given boundary and initial conditions for the flowing mixture and the granular medium’.


Sediment Transport Suspended Sediment Sediment Particle Granular Medium Unit Width 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    K. Ashida, M. Michiue: Proc. Jpn. Soc. Civ. Eng. 206, 59–69 (1972)Google Scholar
  2. 2.
    R.A. Bagnold: Philos. Trans. R. Soc. London A 249, 235–297 (1956)CrossRefMathSciNetADSGoogle Scholar
  3. 3.
    N.L. Coleman: ‘A theoretical and experimental study of drag and lift forces acting on a sphere resting on a hypotetical stream-bed’. In: Proc. 12th Cong. I.A.H.R paper C22 (Fort Collins 1967)Google Scholar
  4. 4.
    F.M. Exner: Sitzber Akad. Wiss 165–180 (1925)Google Scholar
  5. 5.
    G. Galappatti, G.B. Vreugdenhil: J. Hydr. Res. IAHR 23(4), 359–377 (1985)CrossRefGoogle Scholar
  6. 6.
    S. Ikeda: J. Hydraul. Div. ASCE, 108(HY1), 95–114 (1982)Google Scholar
  7. 7.
    A. Kovacs, G. Parker: J. Fluid Mech. 267, 153–183 (1994)zbMATHCrossRefADSGoogle Scholar
  8. 8.
    E. Meyer-Peter, R. Müller: ‘Formulas for bedload transport’. In: III Conf. Of Internat. Ass. of Hydraul. Res., Stockolm, Sweden (1948)Google Scholar
  9. 9.
    J.M. Nelson, R.L. Shreve, S.R. McLean, T.G. Drake: Water Resour. Res. 31(8), 2071–2086 (1995)CrossRefADSGoogle Scholar
  10. 10.
    L.C. van Rijn: J. Hydr. Engng. ASCE 110(11), 1613–1641 (1984)CrossRefGoogle Scholar
  11. 11.
    M. Sekine, H. Kikkawa: J. Hydraul. Eng. ASCE 118(4), 536–558 (1992)CrossRefGoogle Scholar
  12. 12.
    G. Seminara: Meccanica 33, 59–99 (1998)zbMATHCrossRefMathSciNetGoogle Scholar
  13. 13.
    G. Seminara, L. Solari, G. Parker: Water Resour. Res., submitted for publication (2001)Google Scholar
  14. 14.
    A. Shields: Mitteil. Preuss. Versuchanst. Wasser. Erd. Shiffbau, Berlin, n. 26 (1936)Google Scholar
  15. 15.
    A.M. Talmon, N. Struiksma, C.L.M. van Mierlo: J. Hydr. Res. IAHR 33(4), 495–517 (1995)CrossRefGoogle Scholar
  16. 16.
    M. de Vries: ‘Riverbed variations. Aggradation and degradation’. In: IAHR Seminar (New Delhi 1969)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2001

Authors and Affiliations

  • G. Seminara
    • 1
  1. 1.Dipartimento di Ingegneria AmbientaleUniversità di GenovaGenova

Personalised recommendations