21 Debris Flows and Related Phenomena

  • C. Ancey
Part of the Lecture Notes in Physics book series (LNP, volume 582)


Torrential floods are a major natural hazard, claiming thousands of lives and millions of dollars in lost property each year in almost all mountain areas on the Earth. After a catastrophic eruption of Mount St. Helen in the USA in May 1980, water from melting snow, torrential rains from the eruption cloud, and water displaced from Spirit Lake mixed with deposited ash and debris to produce very large debris flows and cause extensive damage and loss of life [1]. During the 1985 eruption of Nevado del Ruiz in Colombia, more than 20,000 people perished when a large debris flow triggered by the rapid melting of snow and ice at the volcano summit, swept through the town of Armero [2]. In 1991, the eruption of Pinatubo volcano in the Philippines disperses more than 5 cubic kilometres of volcanic ash into surrounding valleys. Much of that sediment has subsequently been mobilised as debris flows by typhoon rains and has devastated more than 300 square kilometres of agricultural land. Even, in European countries, recent events that torrential floods may have very destructive effects (Sarno and Quindici in southern Italy in May 1998, where approximately 200 people were killed).


Coarse Particle Solid Concentration Runout Distance Coal Slurry Bulk Behaviour 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    K.M. Scott: ‘Origins, behavior, and sedimentology of lahars and lahars-runout flows in the Toutle-Cowlitz river system’. Report 1447-A (U.S. Geological Survey, 1988)Google Scholar
  2. 2.
    B. Voight: J. Volcan. Geotherm. Res. 44, 349 (1990)CrossRefADSGoogle Scholar
  3. 3.
    P. Coussot: Mud Flow Rheology and Dynamics (Balkema, Rotterdam 1997)Google Scholar
  4. 4.
    D. Brunsden, D.B. Prior: Slope Instability (John Wiley & Sons, New York 1984)Google Scholar
  5. 5.
    M. Zimmermann, P. Mani, P. Gamma, P. Gsteiger, O. Heiniger, G. Hunizker: Murganggefahr und Klimaänderung— ein GIS-basierter Ansatz (VDF, Zürich 1997)Google Scholar
  6. 6.
    P. Coussot, M. Meunier: Earth Sci. Rev. 3-4, 209 (1996)CrossRefADSGoogle Scholar
  7. 7.
    R.M. Iverson: Rev. Geophys. 35, 245 (1997)CrossRefADSGoogle Scholar
  8. 8.
    T. Takahashi: Ann. Rev. Fluid Mech. 13, 57 (1981)CrossRefADSGoogle Scholar
  9. 9.
    V. Koulinski: Étude de la formation d’un lit torrentiel par confrontation d’essais sur modèle réduit et d’observations de terrain. Ph.D. Thesis, University Joseph Fourier, Grenoble (1993)Google Scholar
  10. 10.
    D. Rickenmann: J. Hydraul. Eng. ASCE 117, 1419 (1992)CrossRefGoogle Scholar
  11. 11.
    G.M. Smart, M.N.R. Jaeggi: Sedimenttransport in steilen Gerinnen. Mitteilungen 64 (Versuchanstalt für Wasserbau, Hydrologie und Glaziologie, Zürich 1983)Google Scholar
  12. 12.
    C. Tognacca: Beitrag zur Untersuchung der Entstehungsmechanismen von Murgängen. Ph.D. Thesis, Eidgenössischen Technischen Hochschule Zürich, Zürich (1999)Google Scholar
  13. 13.
    S. Lanzoni: Meccanica di miscugli solido-liquido in regime granulo inerziale. Ph.D.Thesis, University of Padova, Padova (1993)Google Scholar
  14. 14.
    J.J. Major: Experimental studies of deposition of debris flows: process, characteristics of deposits, and effects of pore-fluid pressure. Ph.D. Thesis, University of Washington, Washington (1996)Google Scholar
  15. 15.
    A.M. Johnson, J.R. Rodine: ‘Debris flow’. In: Slope Instability, ed. by D. Brundsen, D.B. Prior (John Wiley & Sons, New York 1984) pp. 257–361Google Scholar
  16. 16.
    P. Coussot, J.-M. Piau: Can. Geotech. J. 32, 263 (1995)CrossRefGoogle Scholar
  17. 17.
    P. Coussot, D. Laigle, M. Arratano, A. Deganutti, L. Marchi: J. Hydraul. Eng. ASCE 124, 865 (1998)CrossRefGoogle Scholar
  18. 18.
    P. Coussot, S. Proust, C. Ancey: J. Non-Newtonian Fluid Mech. 66, 55 (1996)CrossRefGoogle Scholar
  19. 19.
    J.J. Major, T.C. Pierson: Water Resou. Res. 28, 841 (1992)CrossRefADSGoogle Scholar
  20. 20.
    C. J. Phillips, T.R.H. Davies: Geomorphology 4, 101 (1991)CrossRefADSGoogle Scholar
  21. 21.
    Z. Wan, Z. Wang: Hypercontrated flow (Balkema, Rotterdam 1994)Google Scholar
  22. 22.
    P. Coussot: Les laves torrentielles, connaissances pratiques à l’usage du praticien (in French) (Cemagref, Antony 1996)Google Scholar
  23. 23.
    T. Takahashi: Debris flow (Balkema, Rotterdam 1991)Google Scholar
  24. 24.
    C. Ancey: Rhéologie des écoulements granulaires en cisaillement simple, application aux laves torrentielles granulaires. Ph.D. Thesis, Ecole Centrale de Paris, Paris (1997)Google Scholar
  25. 25.
    C.-L. Chen: Rev. Eng. Geology 7, 13 (1987)Google Scholar
  26. 26.
    J.T. Jenkins, E. Askari: ‘Hydraulic theory for a debris flow supported on a collisional shear layer’. In: International Workshop on Floods and Inundations related to Large Earth Movements, Trent 1994, IAHR (IAHR, 1994) pp. 6Google Scholar
  27. 27.
    C. Ancey, P. Coussot: C. R. Acad. Sci., ser. B 327, 515 (1999)ADSGoogle Scholar
  28. 28.
    D. Rickenmann: Natural Hazards 19, 47 (1999)CrossRefGoogle Scholar
  29. 29.
    D. Rickenmann: Schweizer Ingenieur und Architekt 48, 1104 (1996)Google Scholar
  30. 30.
    D. Laigle, P. Coussot: J. Hydraul. Eng. ASCE 123, 617 (1997)CrossRefGoogle Scholar
  31. 31.
    C.C. Mei, M. Yuhi: J. Fluid Mech. 431, 135 (2001)zbMATHCrossRefADSGoogle Scholar
  32. 32.
    B. Hunt: J. Hydraul. Eng. ASCE 110, 1053 (1983)Google Scholar
  33. 33.
    B. Hunt: J. Hydraul. Eng. ASCE 120, 1350 (1994)CrossRefGoogle Scholar
  34. 34.
    X. Huang, M.H. Garcia: J. Fluid Mech. 374, 305 (1998)zbMATHCrossRefADSGoogle Scholar
  35. 35.
    X. Huang, M.H. Garcia: J. Hydraul. Eng. ASCE 123, 986 (1997)CrossRefGoogle Scholar
  36. 36.
    J.M. Piau: J. Rheol. 40, 711 (1996)CrossRefADSMathSciNetGoogle Scholar
  37. 37.
    P. Coussot, C. Ancey: Phys. Rev. E 59, 4445 (1999)CrossRefADSGoogle Scholar
  38. 38.
    Z. Zhou, M.J. Solomon, P.J. Scales, D.V. Boger: J. Rheol. 43, 651 (1999)CrossRefADSGoogle Scholar
  39. 39.
    C.R. Wildemuth, M.C. Williams: Rheol. Acta 24, 75 (1985)CrossRefGoogle Scholar
  40. 40.
    C.R. Wildemuth, M.C. Williams: Rheol. Acta 23, 627 (1984)CrossRefGoogle Scholar
  41. 41.
    S. Mansoutre, P. Colombet, H. Van Damme: Cement Concrete Res. 29, 1441 (1999)CrossRefGoogle Scholar
  42. 42.
    A.A. Potanin, R. De Rooi, D. Van den Ende, J. Mellema: J. Chem. Phys. 102, 5845 (1995)CrossRefADSGoogle Scholar
  43. 43.
    A.A. Potanin, W.B. Russel: Phys. Rev. E 53, 3702 (1996)CrossRefADSGoogle Scholar
  44. 44.
    P. Sollich: Phys. Rev. E 58, 738 (1998)CrossRefADSGoogle Scholar
  45. 45.
    P. Sollich, F. Lequeux, P. Hébraud, M.E. Cates: Phys. Rev. Lett. 78, 2020 (1997)CrossRefADSGoogle Scholar
  46. 46.
    M.Z. Sengun, R.F. Probstein: Rheol. Acta 28, 382 (1989)CrossRefGoogle Scholar
  47. 47.
    M.Z. Sengun, R.F. Probstein: Rheol. Acta 28, 394 (1989)CrossRefGoogle Scholar
  48. 48.
    R.F. Probstein, M.Z. Sengun, T.-C. Tseng: J. Rheol. 38, 811 (1994)CrossRefADSGoogle Scholar
  49. 49.
    C. Ancey, H. Jorrot: J. Rheol. 45, 297 (2001)CrossRefADSGoogle Scholar
  50. 50.
    C. Ancey, P. Coussot, P. Evesque: J. Rheol. 43, 1673 (1999)CrossRefADSGoogle Scholar
  51. 51.
    A. Acrivos, R. Mauri, X. Fan: Int. J. Multiphase Flow 19, 797 (1993)CrossRefzbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2001

Authors and Affiliations

  • C. Ancey
    • 1
  1. 1.Cemagref, unité Erosion Torrentielle, Neige et AvalanchesDomaine UniversitaireSaint-Martin-d’Hères CedexFrance

Personalised recommendations