Advertisement

Mud Flow— Slow and Fast

  • C. C. Mei
  • K.-F. Liu
  • M. Yuhi
Chapter
Part of the Lecture Notes in Physics book series (LNP, volume 582)

Abstract

Heavy and persistent rainfalls in mountainous areas can loosen the hillslope and induce mud flows which can move stones, boulders and even trees, with destructive power on their path. In China where 70% of the land surface is covered by mountains, debris flows due to landslides or rainfalls affect over 18.6% of the nation. Over 10,000 debris flow ravines have been identified; hundreds of lives are lost every year [1]. While accurate assessment is still pending, mud flows caused by Hurricane Mitch in 1998 have incurred devastating floods in Central America. In Honduras alone more than 6000 people perished. Half of the nation’s infrastructures were damaged.

Keywords

Debris Flow Shear Layer Yield Surface Lubrication Approximation Hyperconcentrated Flow 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Z.C. Kang: Debris Flow Hazards and Their Control in China. Scientific Press, Beijing, PRC (1996)Google Scholar
  2. 2.
    B. McDowell: National Geographic 169(5), 640 (1968)Google Scholar
  3. 3.
    B. Lyons: Out of the Inferno, Savage Earth video series, Thirteen/WNET and Granda Televison (1998)Google Scholar
  4. 4.
    E. Allersma: ‘Mud in estuaries and along coasts’. In: International Symposium on River Sedimentation, Beijing, China. Also Pubs. 270, Delft Hydraulics Laboratory, (1982)Google Scholar
  5. 5.
    A.E.J. Bryant, D.J.A. Williams: ‘Rheology of cohesive suspensions’. In: Industrialized Embayments and their Environmental Problems, ed. by M.B. Collins et al. (Pergamon Press, 1980)Google Scholar
  6. 6.
    P.C. Migniot: La Houille Blanche 7, 591 (1968)CrossRefGoogle Scholar
  7. 7.
    Z.H. Wan: ‘Bed material movement in hyperconcentrated flow’. Tech. Univ. Denmark Series Paper No. 31, Inst. of Hydrodynamics and Hydraulic Eng. (1982)Google Scholar
  8. 8.
    R.B. Krone: A study of rheologic properties of estuarial sediments, University of California Hydraulic Engineering Lab. and Sanitary Research Lab., Berkeley, Ser. Rep. No 63-8 (1963)Google Scholar
  9. 9.
    J.S. O’Brien, P.Y. Julien: J. Hydr. Eng., ASCE 114(8), 877 (1988)CrossRefGoogle Scholar
  10. 10.
    N. Qian, Z. H. Wan: A Critical Review of the Research on the Hyperconcentrated Flow in China. International Research and Training Centre on Erosion and Sedimentation, Beijing, China (1986)Google Scholar
  11. 11.
    G. Verreet, J. Berlamont: ‘Rheology and non-Newtonian behavior of sea and estuarine mud’. In: Encyclopedia of Fluid Mechanics, 7 N. Cheremissino.(ed.) Gulf Publ. Co. (1987)Google Scholar
  12. 12.
    K. Yano, A. Daido: Annals of Disaster Prevention Research Institute, Kyoto University, Kyoto, Japan, 7, 340 (1965)Google Scholar
  13. 13.
    A.M. Johnson: Physical processes in geology, Freeman, Cooper & Co. (1970)Google Scholar
  14. 14.
    T.R.H. Davies: Acta Mechanica 63, 161 (1985)CrossRefGoogle Scholar
  15. 15.
    J. Li, J. Yuan, C. Bi, D. Luo: Zeit. Geomorph. N.F. 27(3), 325 (1983)Google Scholar
  16. 16.
    P. Coussot: Mudflow Rheology and Dynamics, IAHR Monograph, A. A. Balkema (1997)Google Scholar
  17. 17.
    Z.H. Wan, Z.Y. Wang: Hyperconcentrated Flow, IAHR Monograph, A. A. Balkema (1994)Google Scholar
  18. 18.
    K.F. Liu, C.C. Mei: J. Fluid Mech. 207, 505–529 (1989)zbMATHCrossRefADSGoogle Scholar
  19. 19.
    K.F. Liu: Dynamics of a shallow layer of fluid mud. Ph.D. Thesis, Civil Engineering Department, Mass. Inst. Tech. (1990)Google Scholar
  20. 20.
    C.C. Mei, M. Yuhi: J. Fluid Mech. 431, 135 (2001)zbMATHCrossRefADSGoogle Scholar
  21. 21.
    K.F. Liu, C.C. Mei: Phys. of Fluids 6, 2577 (1994)zbMATHCrossRefADSGoogle Scholar
  22. 22.
    K.F. Liu, C.C. Mei, Phys. of Fluids A 2, 30 (1990)ADSGoogle Scholar
  23. 23.
    K. F. Liu, C.C. Mei: J. Eng. Sci. 31, 145 (1993)zbMATHCrossRefMathSciNetGoogle Scholar
  24. 24.
    N.J. Balmforth, R.V. Craster: J. Non-Newtonian Fluid Mech. 84, 65 (1999)zbMATHCrossRefGoogle Scholar
  25. 25.
    F. Englund, Z.H. Wan: ‘Instability of hypeconcentrated flow’. Report 255, Technical University of Denmark, (1982)Google Scholar
  26. 26.
    M. Hikida:’ Field observation of roll-waves in debris flow’. In: Symposium Proceedings of Hydraulics/Hydrology of Arid Land, ASCE, San Diego, 410 (1990)Google Scholar
  27. 27.
    N. Qian, Z.H. Wan: Dynamics of Sediments (in Chinese), Science Press, Beijing, China, (1986)Google Scholar
  28. 28.
    H-C. Chang, E.A. Demekhin, E. Kalaidin: Phys. of Fluids 12, 2268 (2000)CrossRefADSMathSciNetGoogle Scholar
  29. 29.
    D.J. Needam, J.H. Merkin: Proc. Roy. Soc. Lond. A 394, 259 (1984)ADSGoogle Scholar
  30. 30.
    R.R. Brock: Am. Soc. Civ. Engr. Hy4, 1401 (1969)Google Scholar
  31. 31.
    C.O. Ng, C.C. Mei: J. Fluid Mech. 263, 151 (1994)zbMATHCrossRefADSGoogle Scholar
  32. 32.
    R.F. Dressler: Comm. Pure & Appl. Math 2, 149 (1949)zbMATHCrossRefMathSciNetGoogle Scholar
  33. 33.
    T. Kajiuchi, A. Saito: J. Chem. Eng. Japan 17(1), 34, (1984)CrossRefGoogle Scholar
  34. 34.
    P.Y. Julien, D.M. Harteley: J. Hydr. Res. 24, 5 (1986)CrossRefGoogle Scholar
  35. 35.
    X. Huang, M.H. Garcia: J. Fluid Mech. 374, 305 (1998)zbMATHCrossRefADSGoogle Scholar
  36. 36.
    P. Coussot, S. Proust, C. Ancey: J. Non-Newtonian Fluid Mech. 66, 55 (1996)CrossRefGoogle Scholar
  37. 37.
    D. Laigle: ‘A two-dimensional model for the study of debris flow spreading on a torrent debris fan’. In: Debris-flow: Hazards Mitigation: Mechanics, Prediction and Assessment, ASCE, 123 (1997)Google Scholar
  38. 38.
    N.J. Balmforth, A.S. Burbidge, R.V. Craster, J. Salzig, A. Shen: J. Fluid Mech. 403, 37 (1999)CrossRefADSGoogle Scholar
  39. 39.
    R.W. Griffiths: Ann. Rev. Fluid Mech. 32, 477 (2000)CrossRefADSGoogle Scholar
  40. 40.
    R.B. Krone: A field study of flocculation as a factor in estuarial shoaling processes, Tech. Rep. 19, Corps of Engineers, U.S. Army (1972)Google Scholar
  41. 41.
    J.T. Wells: Shallow-water waves and fluidmud dynamics, Coast of Sarinam, South America, Tech. Rep. 157, Coastal Studies Inst., Louisiana State University (1978)Google Scholar
  42. 42.
    M.P. Leeder: Sedimentology: Process and Product, George Allen & Unwin Ltd., United Kingdom (1982)Google Scholar
  43. 43.
    G.Z. Forristall, A.M. Reece: J. Geophys. Res. 90(C2), 3367 (1985)ADSCrossRefGoogle Scholar
  44. 44.
    H.G. Gade: J. Mar. Res. 16, 61 (1958)Google Scholar
  45. 45.
    A.J. Mehta, P.Y. Maa: Continental Shelf Research 7, 1268 (1987)ADSGoogle Scholar
  46. 46.
    T. Nagai, T. Yamamoto, L. Figeroa: L. Cont. Shelf Res. 5, 521 (1986)CrossRefADSGoogle Scholar
  47. 47.
    C.C. Mei, K.F. Liu: J. Geophys. Res. 92, 14581 (1987)ADSCrossRefGoogle Scholar
  48. 48.
    K.F. Liu, C.C. Mei: J. Coastal Research 5, 139 (1989)Google Scholar
  49. 49.
    K.F. Liu, C.C. Mei: J. Eng. Sci. 31, 125 (1993)zbMATHCrossRefMathSciNetGoogle Scholar
  50. 50.
    J.Y. Parlange: Soil Sci. 114, 1 (1972)CrossRefGoogle Scholar
  51. 51.
    R. Phillip: Soil Sci. 83, 345 (1957)CrossRefGoogle Scholar
  52. 52.
    V.V. Sokolovskii: Statics of Granular Media (Pergamon, 1965) pp. 270Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2001

Authors and Affiliations

  • C. C. Mei
    • 1
  • K.-F. Liu
    • 2
  • M. Yuhi
    • 3
  1. 1.Department of Civil & Environmental EngineeringMassachusetts Institute of TechnologyCambridgeUSA
  2. 2.Department of Civil EngineeringNational Taiwan UniversityTaipeiTaiwan, Republic of China
  3. 3.Department of Civil EngineeringKanazawa UniversityIshikawaJapan

Personalised recommendations