Advertisement

Granular Material Theories Revisited

  • Y. Wang
  • K. Hutter
Chapter
Part of the Lecture Notes in Physics book series (LNP, volume 582)

Abstract

A granular material is a collection of a large number of discrete solid particles with interstices filled with a fluid or a gas. If the interstitial fluid plays an insignificant role in the transportation of momentum, flows of such materials can be considered as dispersed single-phase flows. In other occasions, when the mass of the interstitial fluid is comparable to that of the solids the interactions between the fluid and solid phases are significant, the motion of the fluid can then provide the driving force for the flow of the solid phase. The dynamical behaviour of these materials can be very complex; its description involves aspects of traditional fluid mechanics, plasticity theory, soil mechanics and rheology.

Keywords

Shear Rate Constitutive Relation Granular Material Solid Volume Fraction Internal Length Scale 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    G. Ahmadi: Int. J. Non-linear Mechanics 15, 251–262 (1980)zbMATHCrossRefMathSciNetADSGoogle Scholar
  2. 2.
    G. Ahmadi: Acta Mech. 44, 299–317 (1982)zbMATHCrossRefGoogle Scholar
  3. 3.
    M.P. Allen, D.J. Tildesley: Computer Simulation of Liquids (Oxford University Press, Oxford 1987)zbMATHGoogle Scholar
  4. 4.
    C. Ancey, P. Coussot, P. Evesque: Mech. Cohesive-Frictional Mat. 1, 385–403 (1996)CrossRefGoogle Scholar
  5. 5.
    R.A. Bagnold: Proc. R. Soc. London A225, 49–63 (1954)ADSGoogle Scholar
  6. 6.
    P.L. Bhatnagar, P. Gross, M. Krook: Physical Reviews 94, 5511–5536 (1954)Google Scholar
  7. 7.
    J. Bluhm, R. De Boer, K. Wilmanski: Mech. Res. Comm. 22, 171–180 (1995)zbMATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    R.M. Bowen: Int. J. Engng. Sci. 18, 1129–1148 (1980)zbMATHCrossRefGoogle Scholar
  9. 9.
    E.J. Boyle, M. Massoudi: Kinetic theories of granular media with applications to fluided beds. U. S. Department of Energy, Technical Note, DOE/METC-89-4088 (1989)Google Scholar
  10. 10.
    V. Buchholtz, T. Pöschel: Physica A 202, 390 (1994)CrossRefADSGoogle Scholar
  11. 11.
    C.S. Campbell: Ann. Rev. Fluid Mech. 22, 57–92(1990)CrossRefADSGoogle Scholar
  12. 12.
    C.S. Campbell, C.E. Brennen: J. Fluid Mech. 151, 167–188 (1985)CrossRefADSGoogle Scholar
  13. 13.
    R.P. Chhabra, P.H.T. Uhlherr: ‘Static equilibrium and motion of spheres in viscoplastic liquids’. In: Encyclopedia of Fluid Mechanics, ed. by N.P. Cheremisino. (Gulf Publishing Coo., Houston 1988) Chapter 21, Vol. 7Google Scholar
  14. 14.
    C.L. Chen: Geol. Soc. Am. Rev. Eng. Geol. Vol. VII, 13–29 (1987)Google Scholar
  15. 15.
    C.L. Chen, C.H. Ling: J. Eng. Mech. 122, 469–480 (1996)CrossRefGoogle Scholar
  16. 16.
    B.D. Coleman, W. Noll: Arch. Rat. Mech. Anal. 13, 167–178 (1963)zbMATHCrossRefMathSciNetGoogle Scholar
  17. 17.
    P. Coussot: J. Hydr. Res. 32(4), 535–559 (1994)Google Scholar
  18. 18.
    P. Coussot: Mud.ow Rheology and Dynamics. (Balkema, Rotterdam 1997)Google Scholar
  19. 19.
    P. Coussot, J.M. Piau: Rheol. Acta 33, 175–184 (1994)CrossRefGoogle Scholar
  20. 20.
    S.C. Cowin, M.A. Goodman: Zeitschrift für Angewandte Mathematik and Mechanik 56, 281–286 (1976)CrossRefMathSciNetzbMATHGoogle Scholar
  21. 21.
    S.C. Cowin, J.W. Nunziato: Int. J. Engng. Sci. 19, 993–1008 (1981)zbMATHCrossRefGoogle Scholar
  22. 22.
    W.O. Criminale, J.L. Ericksen, G.L. Filbey: Arch. Rational Mech. Anal. 1, 410–417 (1958)zbMATHMathSciNetADSGoogle Scholar
  23. 23.
    P.A. Cundall, O.D.L. Strack: Gèotechnique 29(1), 47–65 (1979)CrossRefGoogle Scholar
  24. 24.
    C.M. Dury, G.H. Ristow: J. Phys. I France 7, 737 (1997)CrossRefMathSciNetGoogle Scholar
  25. 25.
    W. Ehlers: ‘Constitutive equations for granular materials in geomechanical context’. In: Continuum Mechanics in Environmental Sciences and Geophysics, ed. by K. Hutter (Springer Verlag, Heidelberg, New York 1993) pp. 313–402Google Scholar
  26. 26.
    S.H. Faria: Continuum Mech. Thermodyn. in press (2001)Google Scholar
  27. 27.
    A.G. Fredrickson: Principles and Applications of Rheology. (Prentice-Hall, Englewood Cliffs 1964)Google Scholar
  28. 28.
    J.A.C. Gallas, H.J. Herrmann, S. Sokolowski: J. Phys. II France 2, 1389 (1992)CrossRefGoogle Scholar
  29. 29.
    J.D. Goddard: Acta Mechanica 63, 3–13 (1986)zbMATHCrossRefGoogle Scholar
  30. 30.
    M.A. Goodman, S.C. Cowin: J. Fluid Mech. 45, 321–339 (1971)zbMATHCrossRefADSGoogle Scholar
  31. 31.
    M.A. Goodman, S.C. Cowin: Arch. Rat. Mech. and Anal. 44, 249–266 (1972)zbMATHADSMathSciNetGoogle Scholar
  32. 32.
    G.W. Govier, C.A. Shook, E.O. Lilge: Trans. Can. Insti. Mining and Met. 60, 147–154 (1957)Google Scholar
  33. 33.
    J.M.N.T. Gray, M. Wieland, K. Hutter: Proc. R. Soc. Lond. A455, 1841–1874 (1999)zbMATHADSMathSciNetGoogle Scholar
  34. 34.
    J.M.N.T. Gray, K. Hutter: Continuum Mech. Thermodyn 9, 341–345 (1997)CrossRefADSGoogle Scholar
  35. 35.
    R. Greve, K. Hutter: Phil. Trans. R. Soc. London A342, 573–604 (1993)CrossRefADSGoogle Scholar
  36. 36.
    R. Greve, T. Koch, K. Hutter: Proc. R. Soc. London A445, 399–413 (1994)zbMATHADSGoogle Scholar
  37. 37.
    R. Gudhe, R.C. Yalamanchili, M. Massoudi: The flow of granular materials in a pipe: numerical solutions. Rec. Adv. Mech. Strcted. Continua, AMD-160/MD-41, 41–53 (1993)Google Scholar
  38. 38.
    G. Gudehus: Soils and Foundations 36, 1–12(1996)Google Scholar
  39. 39.
    P.K. Ha.: J. Fluid Mech. 134, 401–430 (1983)CrossRefADSGoogle Scholar
  40. 40.
    P.K. Ha., B.T. Werner: Powder Technol. 48, 239 (1987)Google Scholar
  41. 41.
    D.M. Hanes, D.L. Inman: J. Fluid Mech. 150, 357–380 (1985)CrossRefADSGoogle Scholar
  42. 42.
    H.J. Herrmann, S. Luding: Continuum Mech. Thermodyn. 10, 1–48 (1998)CrossRefMathSciNetGoogle Scholar
  43. 43.
    H. Hertz: J. für die reine und angew. Math. 92, 136 (1882)Google Scholar
  44. 44.
    K. Hutter: Acta Mechanica (Suppl.) 1, 167–181 (1991)Google Scholar
  45. 45.
    K. Hutter: ‘Avalanche Dynamics’. In: Hydrology of Disasters, ed. by V.P. Singh (Kluwer Academic Publ., Dordrecht-Boston-London 1996) pp. 317–394Google Scholar
  46. 46.
    K. Hutter, R. Greve: J. Glaciology 39, 357–372(1993)ADSGoogle Scholar
  47. 47.
    K. Hutter, L. Laloui, L. Vulliet: Mech. Cohesive-Frictional Mat. 4(4), 295–338 (1999)CrossRefGoogle Scholar
  48. 48.
    K. Hutter, K.R. Rajagopal: Continuum Mech. Thermodyn. 6, 81–139 (1994)zbMATHCrossRefMathSciNetADSGoogle Scholar
  49. 49.
    K. Hutter, T. Koch: Phil. Trans. R. Soc. London, A334, 93–138 (1991)CrossRefADSGoogle Scholar
  50. 50.
    H. Hwang, K. Hutter: Continuum Mech. Thermodyn. 7, 357–384 (1995)zbMATHADSMathSciNetGoogle Scholar
  51. 51.
    J.T. Jenkins: ‘Balance laws and constitutive relations for rapid flows of granular materials‘. In: Proc. Army Research O.ce Workshop on Constitutive Relations, ed. by J. Chandra, R. Srivastava (Philadephia, 1987)Google Scholar
  52. 52.
    J.T. Jenkins, S.C. Cowin: ‘Theories for flowing granular materials’. In: The Joint ASME-CSME Appl. Mech. Fluid Engng. and Bioengng. Conf., AMD-Vol. 31, pp. 79–89 (1979)Google Scholar
  53. 53.
    J.T. Jenkins, M.W. Richman: Arch. Rat. Mech. Anal. 87, 355–377 (1985a)zbMATHCrossRefMathSciNetGoogle Scholar
  54. 54.
    J.T. Jenkins, M.W. Richman: Phys. Fluids 28, 3485–3494 (1985b)zbMATHCrossRefADSGoogle Scholar
  55. 55.
    J.T. Jenkins, M.W. Richman: J. Fluid Mech. 171, 53–69 (1986)zbMATHCrossRefADSGoogle Scholar
  56. 56.
    J.T. Jenkins, S.B. Savage: J. Fluid Mech. 130, 186–202 (1983)CrossRefADSGoogle Scholar
  57. 57.
    G. Johnson, M. Massoudi, K.R. Rajagopal: Chem. Engng. Sci. 46(7), 1713–1723 (1991)CrossRefGoogle Scholar
  58. 58.
    G. Johnson, M. Massoudi, K.R. Rajagopal: Int. J. Engng. Sci. 29, 649–661 (1991)zbMATHCrossRefMathSciNetGoogle Scholar
  59. 59.
    G. Johnson, M. Massoudi, K.R. Rajagopal: Rec. Adv. Mech. Strctd. Cont. AMD 117, 97–105 (1991)Google Scholar
  60. 60.
    P.C. Johnson, R. Jackson: J. Fluid Mech. 130, 187–202 (1987)Google Scholar
  61. 61.
    P.C. Johnson, P. Nott, R. Jackson: J. Fluid Mech. 210, 501–535 (1990)CrossRefADSGoogle Scholar
  62. 62.
    P.Y. Julien, Y. Lan: J. Hydraulic Eng. 117(3), 346–353 (1991)CrossRefGoogle Scholar
  63. 63.
    N. Kirchner: Thermodynamics of Structured Granular Media. Ph.D. Thesis, Institute of Mechanics, Darmstadt University of Technology (2001)Google Scholar
  64. 64.
    N. Kirchner, K. Hutter: ‘Thermodynamic modelling of granular continua exhibiting quasi-static frictonal behaviour with abrasion’. In: Mathematical Models of granular and porous materials. ed. by G. Capriz, G. Ghionna, P. Giovine (Modelling and Simulation in Science, Engineering and Technology Series, Birkhaeuser 2001)Google Scholar
  65. 65.
    T. Koch, R. Greve, K. Hutter: Proc. R. Soc. London A445, 415–435 (1994)zbMATHADSCrossRefGoogle Scholar
  66. 66.
    D. Kolymbas: Ing. Arch. 61, 143–151 (1991)zbMATHGoogle Scholar
  67. 67.
    D. Kolymbas, W. Wu: ‘Introduction to hypoplasticity’. In: Modern Approaches to Plasticity, ed. by D. Kolymbas (Elsevier, 1993) pp. 213–223Google Scholar
  68. 68.
    L.D. Landau, E.M. Lifschitz: Elastizitätstheorie (Akademie-Verlag, Berlin 1989)zbMATHGoogle Scholar
  69. 69.
    J. Lee, H.J. Herrmann: J. Phys. A: Math. Gen. 26, 373 (1993)CrossRefADSGoogle Scholar
  70. 70.
    I-Shih Liu: Arch. Rat. Mech. and Anal. 46, 131–148 (1972)zbMATHADSGoogle Scholar
  71. 71.
    K.F. Liu, C.C. Mei: Physics of Fluids A6(8), 2577–2590 (1994)CrossRefADSGoogle Scholar
  72. 72.
    S. Luding: Die Physik kohäsionsloser granularere Medien. Habilitation (Logos Verlag, Berlin 1997) pp. 1–197Google Scholar
  73. 73.
    C.K.K. Lun, S.B. Savage, D.J. Jeffrey, N. Chepurniy: J. Fluid Mech. 140, 233–256 (1984)CrossRefADSGoogle Scholar
  74. 74.
    D.N. Ma, G. Ahmadi: Power Tech. 56, 191 (1988)CrossRefGoogle Scholar
  75. 75.
    M. Massoudi: Application of mixture theory to fluidized beds. Ph.D. Thesis, University of Pittsburgh (1986)Google Scholar
  76. 76.
    M. Massoudi, E.J. Boyle: A review of theories for flowing granular materials with applications to fluidized beds and solids transport. U.S. Department of energy Report, DOE/PETC/TR-91/8 (1991)Google Scholar
  77. 77.
    J.J. McCarthy, J.E. Wolf, T. Shinbrot, G. Metcalfe: AICHE 42, 3351–3363 (1996)CrossRefGoogle Scholar
  78. 78.
    D.F. McTigue: A nonlinear continuum theory for flowing granular materials. Ph.D. Thesis, Dept. of Geol., Stanford University (1979)Google Scholar
  79. 79.
    D.F. McTigue: J. Appl. Mech. 49, 291–296 (1982)zbMATHCrossRefGoogle Scholar
  80. 80.
    S. Melin: Int. J. Mod. Phys. C 4, 1103 (1993)CrossRefADSGoogle Scholar
  81. 81.
    G. Metcalfe, T. Shinbrot, J.J. McCarthy, J.M. Ottino: Nature 374, 39–41 (1995)CrossRefADSGoogle Scholar
  82. 82.
    I. Müller: Arch. Rat. Mech. and Anal. 40 (1971)Google Scholar
  83. 83.
    I. Müller: Thermodynamics (Pitmann, Boston 1985)zbMATHGoogle Scholar
  84. 84.
    Q.D. Nguyen, D.V. Boger: J. Rheol. 27, 321–349 (1983)CrossRefGoogle Scholar
  85. 85.
    H. Norem, F. Irgens, B.A. Schieldrop: ‘A continuum model for calculating snow avalanches’. In: Avalanche Formation, Movement and Effects, ed. by B. Salm, H. Gubler (IAHS publ. Noangemessen. 126, 1987) pp. 363–379Google Scholar
  86. 86.
    J.W. Nunziato, S.C. Cowin: Arch. Rotational Mech. Anal. 72, 175–201 (1979)zbMATHADSMathSciNetGoogle Scholar
  87. 87.
    J.W. Nunziato, S.L. Passman, J.P. Thomas: J. Rheol. 24, 395–420 (1980)zbMATHCrossRefADSGoogle Scholar
  88. 88.
    S. Ogawa, A. Unemura, N. Oshima: J. Appl. Math. Phys. 31, 483–493 (1980)zbMATHCrossRefGoogle Scholar
  89. 89.
    T. Ohtsuki, Y. Takemoto, T. Hata, S. Kawai, A. Hayashi: Int. J. Mod. Phys. B 7, 1865–1872(1993)CrossRefADSGoogle Scholar
  90. 90.
    S.L. Passman, J.W. Nunziato, P.B. Bailey: J. Rheol. 30, 167–192(1986)zbMATHCrossRefADSGoogle Scholar
  91. 91.
    S.L. Passman, J.W. Nunziato, P.B. Bailey, J.P. Thomas: J. Eng. Mech. Division, ASCE 106, 773–783 (1980)Google Scholar
  92. 92.
    T. Pöschel: J. Phys. II France 3, 27 (1993)CrossRefGoogle Scholar
  93. 93.
    K.R. Rajagopal, M. Massoudi: A method for measuring material moduli of granular materials: flow in an orthogonal rheometer. Topical Report U, Department of Energy. DOE/PETC/TR-90/3 (1990)Google Scholar
  94. 94.
    K.R. Rajagopal, W.C. Troy, M. Massoudi: Eur. J. Mech., B/Fluids 11, 265–276 (1992)zbMATHMathSciNetGoogle Scholar
  95. 95.
    G.H. Ristow: Int. J. Mod. Phys. C 3, 1281–1293 (1992)CrossRefADSGoogle Scholar
  96. 96.
    G.H. Ristow: Europhys. Lett. 28, 97–101 (1994a)CrossRefADSGoogle Scholar
  97. 97.
    G.H. Ristow: Flow properties of granular materials in three-dimensional geometries. Habilitation, Philipps-Universität Marburg, pp. 1–111 (1998)Google Scholar
  98. 98.
    G.H. Ristow, H.J. Herrmann: Phys. Rev. E 50, R5–R8 (1994)CrossRefADSGoogle Scholar
  99. 99.
    R.S. Sampaio, W.O. Williams: J. de Mechanique 18, 19–45 (1979)ADSMathSciNetzbMATHGoogle Scholar
  100. 100.
    S.B. Savage: J. Fluid Mech. 92, 53–96 (1979)zbMATHCrossRefADSGoogle Scholar
  101. 101.
    S.B. Savage: ‘Granular flows down rough inclines-review and extension’. In: Mech. of Granular Materials: New Models and Constitutive Relations, ed. by J.T. Jenkins, M. Satake (Elsevier 1983) pp. 261–282Google Scholar
  102. 102.
    S.B. Savage, K. Hutter: J. Fluid Mech. 199, 177–215 (1989)zbMATHCrossRefADSMathSciNetGoogle Scholar
  103. 103.
    S.B. Savage, K. Hutter: Acta Mech. 86, 201–223 (1991)zbMATHCrossRefMathSciNetGoogle Scholar
  104. 104.
    S.B. Savage, D.J. Jeffrey: J. Fluid Mech. 110, 255–272 (1981)zbMATHCrossRefADSGoogle Scholar
  105. 105.
    S.B. Savage, C.K.K. Lun: J. Fluid Mech. 189, 311–335 (1988)CrossRefADSGoogle Scholar
  106. 106.
    S.B. Savage, S. McKeown: J. Fluid Mech. 127, 453–472(1983)CrossRefADSGoogle Scholar
  107. 107.
    S.B. Savage, M. Sayed: J. Fluid Mech. 142, 391–430 (1984)CrossRefADSGoogle Scholar
  108. 108.
    T. Scheiwiller, K. Hutter: ‘Lawinendynamik, Übersicht über Experimente und theoretische Modelle von Fließ-und Staublawinen’. Mitteilung N0. 58 der Versuchsanstalt für Wasserbau, Hydrologie und Glaziologie an der ETH Zürich, pp. 166 (1982)Google Scholar
  109. 109.
    W.R. Schowalter: Mechanics of non-Newtonian fluids (Pergamon Press, Oxford 1978)Google Scholar
  110. 110.
    M. Shahinpoor, S.P. Lin: Acta Mechanica 42, 183–196 (1982)zbMATHCrossRefGoogle Scholar
  111. 111.
    M. Shahinpoor, J.S.S. Siah: J. Non-Newt. Fluid Mech. 9, 147–156 (1981)CrossRefzbMATHGoogle Scholar
  112. 112.
    H. Shen, N.L. Ackerman: J. Eng. Mech. Div. 108, 748–763 (1982)Google Scholar
  113. 113.
    S. Straub: Schnelles granular Fließen in subaerischen pyroklastischen Strömen. PhD thesis, Bayerische Julius-Maximilians-Universität Würzburg (1994)Google Scholar
  114. 114.
    B. Svendsen, K. Hutter: Int. J. Engng Sci. 33, 2021–2054 (1995)zbMATHCrossRefMathSciNetGoogle Scholar
  115. 115.
    B. Svendsen, K. Hutter, L. Laloui: Continuum Mech. Thermodyn. 11, 263–275 (1999)zbMATHCrossRefADSMathSciNetGoogle Scholar
  116. 116.
    Y.C. Tai: Dynamics of Granular Avalanches and their Simulations with Shock-Capturing and Front-Tracking Numerical Schemes. Ph.D. Thesis, DarmstadtUniversity of Technology, 146 p (2000)Google Scholar
  117. 117.
    P.A. Thompson, G.S. Grest: Phys. Rev. Lett. 67, 1751 (1991)CrossRefADSGoogle Scholar
  118. 118.
    Y. Tsuji, T. Tanaka, T. Ishida: Powder Technol. 71, 239 (1992)CrossRefGoogle Scholar
  119. 119.
    O.R. Walton, R.L. Braun: J. Rheology 30, 949–980 (1986)CrossRefADSGoogle Scholar
  120. 120.
    O.R. Walton, R.L. Braun, R.G. Mallon, D.M. Cervelli: ‘Particle-dynamics calculations of gravity flow of inelastic, frictional spheres’. In: Micromechanics of Granular Materials, ed. by M. Satake, J.T. Jenkins (Elsevier 1987) pp. 153–162Google Scholar
  121. 121.
    O.R. Walton, H. Kim, A. Rosato: ‘Micro-structure and stress difference in shearing flows of granular materials’. In: Proc. ASCE Eng. Mech. Div. Conf. (Columbus, Ohio, May 19–21, 1991)Google Scholar
  122. 122.
    Y. Wang, K. Hutter: Particulate Science and Technology 17, 97–124 (1999)CrossRefGoogle Scholar
  123. 123.
    Y. Wang, K. Hutter: Granular Matter 1(4), 163–181 (1999)CrossRefGoogle Scholar
  124. 124.
    Y. Wang, K. Hutter: Arch. Mech. 51(5), 605–632(1999c)zbMATHMathSciNetGoogle Scholar
  125. 125.
    K. Wilmanski: Arch. Mech. 48, 591–628 (1996)zbMATHGoogle Scholar
  126. 126.
    K. Wilmanski: The thermodynamical model of compressible porous materials with the balance equation of porosity. Preprint No. 310, ed. by Weierstraß-Institute für Angewandte Analysis und Stochastik, Berlin (1997)Google Scholar
  127. 127.
    W. Wu, E. Bauer, D. Kolymbas: Mech. Mat. 24, 45–69 (1996)CrossRefGoogle Scholar
  128. 128.
    Y. Zhang, C.S. Campbell: J. Fluid Mech. 237, 541 (1992)CrossRefADSGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2001

Authors and Affiliations

  • Y. Wang
    • 1
  • K. Hutter
    • 1
  1. 1.Institute of MechanicsDarmstadt University of TechnologyDarmstadtGermany

Personalised recommendations