Advertisement

Earth’s Surface Morphology and Convection in the Mantle

  • R. W. Griffiths
  • J. A. Whitehead
Chapter
  • 1.1k Downloads
Part of the Lecture Notes in Physics book series (LNP, volume 582)

Abstract

It is now generally agreed that the Earth’s solid mantle is undergoing thermal convection. Much of the evidence for this conclusion is derived from geological and geophysical observations of the Earth’s surface, its relative horizontal motions and its topography. Direct consequences of the mantle flow include plate tectonics, which refers to the relative motions of the continents, spreading of the sea-floor, creation of new crust and mid-ocean ridges at spreading centres, and subduction at ocean trenches, along with associated phenomena such as mountain building and volcanism. The motion of the mantle over geological time scales is driven by gravity acting on density differences, which result from loss of heat from the Earth’s surface and, to a lesser extent, from transfer of heat from the Earth’s core to the mantle. Mantle convection phenomena are reviewed here in the context of geomorphology because they are responsible for producing much of the large-scale topography (horizontally > 10 km) of the Earth’s surface. This topography, in turn, imposes strong influences on the atmosphere and ocean circulation patterns, affects precipitation, and provides the base on which erosion and sedimentation processes act. The surface transport processes can also couple back to mantle flow and topography through redistribution of loading on the mantle.

Keywords

Boundary Layer Earth Planet Rayleigh Number Thermal Boundary Layer Spreading Centre 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    H. Berner, H. Ramber, O. Stephansson: Tectonophysics 15, 197 (1972)CrossRefADSGoogle Scholar
  2. 2.
    M.A. Biot, H. Ode: Geophysics 30, 213 (1965)CrossRefADSGoogle Scholar
  3. 3.
    M.A. Biot: Geophysics 30, 153 (1966)CrossRefADSGoogle Scholar
  4. 4.
    R. Boehler: Nature 363, 534 (1993)CrossRefADSGoogle Scholar
  5. 5.
    B.A. Buffet, H.E. Huppert, J.R. Lister, A.W. Woods: J. Geophys. Res. 101, 7989 (1996)CrossRefADSGoogle Scholar
  6. 6.
    I.H. Campbell, R.W. Griffiths: Earth Planet. Sci. Lett. 99, 79 (1990)CrossRefADSGoogle Scholar
  7. 7.
    I.H. Campbell, R.W. Griffiths: J. Geol. 92, 497 (1992)CrossRefADSGoogle Scholar
  8. 8.
    S. Chandrasekhar: Hydrodynamics and Hydromagnetic Stability (Oxford University Press, New York 1961)Google Scholar
  9. 9.
    Z.F. Danes: Geophysics 29, 414 (1964)CrossRefADSGoogle Scholar
  10. 10.
    A. Davaille, C. Jaupart: J. Fluid Mech. 253, 141 (1993)CrossRefADSGoogle Scholar
  11. 11.
    A. Davaille, C. Jaupart: J. Geophys. Res. 99, 19,853 (1994)Google Scholar
  12. 12.
    G.F. Davies: J. Geophys. Res. 93, 10,467 (1988)ADSGoogle Scholar
  13. 13.
    G.F. Davies: J. Geophys. Res. 93, 10,451 (1988)ADSGoogle Scholar
  14. 14.
    G.F. Davies: Geophys. J. Int. 115, 132 (1993)CrossRefADSGoogle Scholar
  15. 15.
    G.F. Davies: Earth Planet. Sci. Lett 133, 507 (1995)CrossRefADSGoogle Scholar
  16. 16.
    G.F. Davies, M. Gurnis: Geophys. J. Roy. Astr. Soc. 85, 523 (1986)Google Scholar
  17. 17.
    G.F. Davies, M.A. Richards: Geophys. J. Geol. 100, 151 (1992)Google Scholar
  18. 18.
    G.F. Davies: Dynamic Earth: Plates, Plumes and Mantle Convection (Cambridge University Press, Cambridge 1999)CrossRefGoogle Scholar
  19. 19.
    M.B. Dobrin: Eos Trans. AGU 22, 528 (1941)Google Scholar
  20. 20.
    M.R. Drury, J.D. FitzGerald: ‘Mantle Rheology: Insights from laboratory studies of deformation and phase transformation’. In: The Earth’s Mantle: Composition, Structure and Evolution, ed. by I. Jackson (Cambridge University Press, New York 1998) pp. 503–559Google Scholar
  21. 21.
    R.A. Duncan, M.A. Richards: Rev. Geophys. 29, 31 (1991)ADSCrossRefGoogle Scholar
  22. 22.
    C. Farnetani, M.A. Richards: Earth Planet. Sci. Lett. 136, 251 (1995)CrossRefADSGoogle Scholar
  23. 23.
    M.F. Fitzpatrick: The dynamics of viscous thermal plumes in the Earth’s mantle. Honours Thesis, The Australian National University (1991)Google Scholar
  24. 24.
    R.W. Griffiths: J. Fluid Mech. 166, 115 (1986)CrossRefADSGoogle Scholar
  25. 25.
    R.W. Griffiths: J. Fluid Mech. 166, 139 (1986)zbMATHCrossRefADSGoogle Scholar
  26. 26.
    R.W. Griffiths: Earth Planet. Sci. Lett. 78, 435 (1986)CrossRefADSGoogle Scholar
  27. 27.
    R.W. Griffiths: Phys. Fluids, A 3, 1233 (1991)CrossRefADSGoogle Scholar
  28. 28.
    R.W. Griffiths, I.H. Campbell: Earth Planet. Sci. Lett. 99, 66 (1990)CrossRefADSGoogle Scholar
  29. 29.
    R.W. Griffiths, I.H. Campbell: Earth Planet. Sci. Lett. 103, 214 (1991)CrossRefADSGoogle Scholar
  30. 30.
    R.W. Griffiths, I.H. Campbell: J. Geophys. Res. 96, 18, 295 (1991)Google Scholar
  31. 31.
    R.W. Griffiths, M.A. Richards: Geophys. Res. Lett. 16, 437 (1989)ADSCrossRefGoogle Scholar
  32. 32.
    R.W. Griffiths, J.S. Turner: ‘Understanding mantle dynamics through mathematical models and laboratory experiments’. In: The Earth’s Mantle: Composition, Structure and Evolution, ed. by I. Jackson (Cambridge University Press, New York 1998) pp. 191–227Google Scholar
  33. 33.
    R.W. Griffiths, M. Gurnis, G. Eitelberg: Geophys. J. 96, 1 (1989)CrossRefGoogle Scholar
  34. 34.
    E.H. Hauri, J.A. Whitehead, S.R. Hart: J. Geophys. Res. 99, 24275 (1994)CrossRefADSGoogle Scholar
  35. 35.
    R.I. Hill, I.H. Campbell, G.F. Davies, R.W. Griffiths: Science 256, 186 (1992)CrossRefADSGoogle Scholar
  36. 36.
    L.N. Howard: ‘Convection at high Rayleigh number’. In:Proc.11th Int. Congress Applied Mechanics, Münich 1964, ed. by H. Görtler (Springer-Verlag, Berlin) pp. 1109–1115Google Scholar
  37. 37.
    B.L.N. Kennett, R. van der Hilst: ‘Seismic structure of the mantle: From subduction zone to craton’. In: The Earth’s Mantle: Composition, Structure and Evolution, ed. by I. Jackson (Cambridge University Press, New York 1998) pp. 381–404Google Scholar
  38. 38.
    K. Lambeck, P. Johnston: ‘The viscosity of the mantle: Evidence from analyses of glacial-rebound phenomena’. In: The Earth’s Mantle: Composition, Structure and Evolution, ed. by I. Jackson (Cambridge University Press, New York 1998) pp. 461–502Google Scholar
  39. 39.
    D.E. Loper, F.D. Stacey: Phys. Earth Planet. Interiors 33, 304 (1983)CrossRefADSGoogle Scholar
  40. 40.
    W.J. Morgan: Nature 230, 42 (1971)CrossRefADSGoogle Scholar
  41. 41.
    L.L. Nettleton: Amer. Ass. Petrol. Geol. Bull. 18, 1175 (1934)Google Scholar
  42. 42.
    P.L. Olson, I.S. Nam: J. Geophys. Res. 91, 7181 (1986)ADSCrossRefGoogle Scholar
  43. 43.
    T.J. Parker, A.N. McDowell: Amer. Ass. Petrol. Geol. Bull. 39, 2384 (1955)Google Scholar
  44. 44.
    H. Ramberg: Bull. Geol. Inst. Univ. Uppsala 42, 1 (1963)Google Scholar
  45. 45.
    H. Ramberg: Geophys. J. 14, 307 (1967)Google Scholar
  46. 46.
    H. Ramberg: Phys. Earth Planet. Interiors 1, 63 (1968)CrossRefADSGoogle Scholar
  47. 47.
    H. Ramberg: Phys. Earth Planet. Interiors 1, 427 (1968)CrossRefADSGoogle Scholar
  48. 48.
    H. Ramberg: Phys. Earth Planet. Interiors 5, 45 (1968)CrossRefADSGoogle Scholar
  49. 49.
    H. Ramberg: Geol. J. Spec. Issue 2, 261 (1970)Google Scholar
  50. 50.
    Lord Rayleigh: Scientific papers, ii (Cambridge University Press, Cambridge 1900), 200–207Google Scholar
  51. 51.
    M.A. Richards, R.A. Duncan, V.E. Courtillot: Science 246, 103 (1989)CrossRefADSGoogle Scholar
  52. 52.
    M.A. Richards, R.W. Griffiths: Geophys. J. 94, 367 (1988)ADSCrossRefGoogle Scholar
  53. 53.
    M.A. Richards, R.W. Griffiths: Nature 342, 900 (1988)CrossRefADSGoogle Scholar
  54. 54.
    G.G. Schaber, R.G. Strom, H.J. Moore, L.A. Soderblom, R.L. Kirk, D.J. Dawson, L.R. Gaddis, J.M. Boyce, J. Russell: J. Geophys. Res. 97, 13,257 (1992)Google Scholar
  55. 55.
    J.G. Sclater, J. Francheteau: Geophys. J. Royal. Astron. Soc. 20, 509 (1970)Google Scholar
  56. 56.
    F. Selig: Geophysics 30, 633 (1965)CrossRefADSGoogle Scholar
  57. 57.
    J.N. Skilbeck, J.A. Whitehead: Nature 272, 499 (1978)CrossRefADSGoogle Scholar
  58. 58.
    N.H. Sleep: J. Geophys. Res. 95, 6715 (1990)ADSCrossRefGoogle Scholar
  59. 59.
    V.S. Solomatov, L.N. Moresi: J. Geophys. Res. 101, 4737 (1996)CrossRefADSGoogle Scholar
  60. 60.
    F.W. Stacey, D.E. Loper: Phys. Earth Planet. Interiors 33, 45 (1983)CrossRefADSGoogle Scholar
  61. 61.
    D.J. Stevenson, J.S. Turner: ‘Fluid models of mantle convection.’ In: The Earth: Its origin, structure and evolution, ed. by M.W. McElhinny (Academic Press, London 1979) pp.227–263Google Scholar
  62. 62.
    D.C. Tozer: Phil. Trans. R. Soc. A 258, 252 (1965)CrossRefADSGoogle Scholar
  63. 63.
    D.L. Turcotte, E.R. Oxburgh: Ann. Rev. Fluid Mech. 4, 252 (1972)CrossRefGoogle Scholar
  64. 64.
    D.L. Turcotte, G. Schubert: Geodynamics applications of continuum physics to geological problems (John Wiley and Son, New York 1982)Google Scholar
  65. 65.
    J.S. Turner: Buoyancy Effects in Fluids (Cambridge University Press, Cambridge 1973)zbMATHGoogle Scholar
  66. 66.
    J.S. Turner: Earth Planet. Sci. Lett. 17, 369 (1973)CrossRefADSGoogle Scholar
  67. 67.
    R. Weinberg, Y.Y. Podladchikov: J. Structural Geol. 17, 1183 (1995)CrossRefADSGoogle Scholar
  68. 68.
    R. White, D. McKenzie: J. Geophys. Res. 94, 7685 (1989)ADSCrossRefGoogle Scholar
  69. 69.
    J.A. Whitehead: Ann. Rev. Fluid Mech. 20, 369 (1988)CrossRefGoogle Scholar
  70. 70.
    J.A. Whitehead, P.S. Luther: J. Geophys. Res. 80, 705 (1975)ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2001

Authors and Affiliations

  • R. W. Griffiths
    • 1
  • J. A. Whitehead
    • 2
  1. 1.Research School of Earth SciencesThe Australian National UniversityCanberraAustralia
  2. 2.Woods Hole Oceanographic InstitutionWoods HoleUSA

Personalised recommendations