Advertisement

Morphological Instabilities in Flows with Cooling, Freezing or Dissolution

  • J. A. Whitehead
  • R. W. Griffiths
Chapter
Part of the Lecture Notes in Physics book series (LNP, volume 582)

Abstract

The Earthߣs crust is shaped by a wide range of fluid flows and their characteristic instabilities. Here we consider the flow of silicate melts, either within the crust or as surface lava flows, and the way in which these flows are affected by variable viscosity due to cooling or by a yield strength resulting fromsolidification. These effects invariably lead to non-uniformor three-dimensional flow patterns, particularly fingering and channelisation. In the case of solidifying free-surface flows there is, in addition, a range of three-dimensional surface structures or deformation styles depending on flow conditions. Parallels can be drawn with channeling instabilities that occur in either the dissolution of a porous matrix or precipitation reactions within a matrix during the percolation of an interstitial fluid.

Keywords

Yield Strength Peclet Number Gravity Current Lava Dome Darcy Velocity 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    E. Aharonov, J.A. Whitehead, P.B. Kelemen, M. Spiegelman: J. Geophys. Res. 100, 20,433 (1995)Google Scholar
  2. 2.
    E. Aharonov, M. Spiegelman, P.B. Kelemen: J. Geophys. Res. 102 14, 821 (1997)Google Scholar
  3. 3.
    N.J. Balmforth, A.S. Burbidge, R.V. Craster, J. Salzig, A. Shen: J. Fluid Mech. 403, 37 (2000)zbMATHCrossRefADSGoogle Scholar
  4. 4.
    M.A. Biot: Bull. Geol. Soc. Am. 72, 1595 (1961)CrossRefGoogle Scholar
  5. 5.
    S. Blake: ‘Emplacement Mechanisms and Hazard Implications’. In: Lava Flows and Domes, ed. by J.H. Fink (IAVCEI Proc. in Volcanology, vol. 2, 1990) pp. 88–128Google Scholar
  6. 6.
    P.M. Bruce, H.E. Huppert: Nature 342, 665–667 (1989)CrossRefADSGoogle Scholar
  7. 7.
    K.V. Cashman, H. Pinkerton, P.J. Stephenson: J. Geophys. Res. 103 27281-9 (1998)CrossRefADSGoogle Scholar
  8. 8.
    P. Coussot, S. Proust: J. Geophys. Res. 101, 25217 (1996)CrossRefADSGoogle Scholar
  9. 9.
    P. Coussot, S. Proust, C. Ancey: J. Non-Newtonian Fluid Mech. 66, 55 (1996)CrossRefGoogle Scholar
  10. 10.
    J. Crisp, S. Baloga: J. Geophys. Res. 95, 1255 (1990)ADSCrossRefGoogle Scholar
  11. 11.
    J.H. Fink, R.C. Fletcher: J. Volcanol. Geotherm. Res. 4, 151 (1978)CrossRefADSGoogle Scholar
  12. 12.
    J.H. Fink, R.W. Griffiths: J. Fluid. Mech. 221, 485 (1990)CrossRefADSGoogle Scholar
  13. 13.
    J.H. Fink, R.W. Griffiths: J. Volcanol. Geotherm. Res. 54, 19 (1992)CrossRefADSGoogle Scholar
  14. 14.
    J.H. Fink, R.W. Griffiths: J. Geophys. Res. 103, 527 (1998)CrossRefADSGoogle Scholar
  15. 15.
    J.H. Fink: Geology 8, 250 (1980a)CrossRefADSGoogle Scholar
  16. 16.
    J.H. Fink: Tectonophys. 66, 147 (1980b)CrossRefGoogle Scholar
  17. 17.
    T.K.P. Gregg, J.H. Fink: J. Volcanol. Geothermal Res. 86, 145 (2000)CrossRefADSGoogle Scholar
  18. 18.
    R.W. Griffiths, J.H. Fink: J. Geophys. Res. 97, 19739 (1992)ADSCrossRefGoogle Scholar
  19. 19.
    R.W. Griffiths, J.H. Fink: J. Geophys. Res. 97, 19729 (1992)ADSCrossRefGoogle Scholar
  20. 20.
    R.W. Griffiths, J.H. Fink: J. Fluid Mech. 252, 667 (1993)CrossRefADSGoogle Scholar
  21. 21.
    R.W. Griffiths, J.H. Fink: J. Fluid Mech. 347, 13 (1997)CrossRefMathSciNetADSGoogle Scholar
  22. 22.
    R.W. Griffiths: Ann. Rev. Fluid Mech. 32, 477 (2000)CrossRefADSGoogle Scholar
  23. 23.
    K. Helfrich: J. Fluid Mech. 305, 219 (1995)zbMATHCrossRefADSGoogle Scholar
  24. 24.
    C.J. Hughes: Igneous Petrology (Elsevier Scientific Publishing Company, New York 1982)Google Scholar
  25. 25.
    G. Hulme: Mod. Geol. 4, 107 (1973)ADSGoogle Scholar
  26. 26.
    G. Hulme: Geophys. J. Roy. Astr. Soc. 39, 361 (1974)Google Scholar
  27. 27.
    G. Hulme: Geophys. Surv. 5, 245 (1982)CrossRefADSGoogle Scholar
  28. 28.
    H.E. Huppert, R.S.J. Sparks, J.S. Turner, N.T. Arndt: Nature 309, 19 (1984)CrossRefADSGoogle Scholar
  29. 29.
    H.E. Huppert, R.S.J. Sparks: J. Petrol. 26, 694 (1985)Google Scholar
  30. 30.
    H.E. Huppert: J. Fluid Mech. 121, 43 (1982)CrossRefADSGoogle Scholar
  31. 31.
    J.P. Kauahikaua, K.V. Cashman, T.N. Mattox, K. Hon, C.C. Heliker, M.T. Mangan, C.R. Thornber: J. Geophys. Res. 103, 27303 (1998)CrossRefADSGoogle Scholar
  32. 32.
    P.B. Kelemen, J.A. Whitehead, E. Aharonov, K. Jordahl: J. Geophys. Res. 100, 475 (1995)CrossRefADSGoogle Scholar
  33. 33.
    P.B. Kelemen, E. Aharonov: ‘Periodic formation of magma fractures and generation of layered gabbros in the lower crust beneath ocean spreading centres.’ In: Faulting and Magmatism at Mid-Ocean Ridges, ed. by W.R. Buck, P.T. Delaney, J.A. Karson, Y. Lagabrielle (Geophysical Monograph 106, American Geophysical Union, Washington DC 1998) pp. 267–280Google Scholar
  34. 34.
    C.R.J. Kilburn: ‘Lava crust ‘a‘a flow lengthening and the pahoehoe-‘a‘a transition’, ed. by C.R.J. Kilburn. In: Active Lavas (UCL Press, London 1993) pp. 263–280Google Scholar
  35. 35.
    J.R. Lister: J Fluid Mech. 242, 631 (1993)CrossRefMathSciNetADSGoogle Scholar
  36. 36.
    H. Miyamoto, S. Sasaki: J. Geophys. Res. 103, 27489 (1998)CrossRefADSGoogle Scholar
  37. 37.
    J.F. Nye: J. Glaciol. 2, 82 (1952)ADSGoogle Scholar
  38. 38.
    P. Ortoleva, E. Merino, C. Moore, J. Chadam: American Journal of Science 287, 979 (1987)CrossRefGoogle Scholar
  39. 39.
    P. Ortoleva, J. Chadam, E. Merino, A. Sen: American Journal of Science 287, 1008 (1987)CrossRefGoogle Scholar
  40. 40.
    D.I. Osmond, R.W. Griffiths: J. Fluid Mech. (in press 2001)Google Scholar
  41. 41.
    D.W. Peterson, R.T. Holcomb, R.I. Tilling, R.L. Christiansen: Bull. Volcanol. 56, 343 (1994)ADSGoogle Scholar
  42. 42.
    H. Pinkerton: Endeavour 11, 73 (1987)CrossRefGoogle Scholar
  43. 43.
    P.G. Saffman, G.I. Taylor: Proc. Roy. Soc. A 245, 312 (1958)zbMATHCrossRefMathSciNetADSGoogle Scholar
  44. 44.
    A.H.P. Skelland: Non-Newtonian flow and heat transfer (Wiley, New York 1967)Google Scholar
  45. 45.
    M. Spiegelman, P.B. Kelemen, E. Aharonov: J. Geophys. Res. (submitted 2000)Google Scholar
  46. 46.
    J.S. Turner, H.E. Huppert, R.S.J. Sparks: J. Petrol. 27, 397 (1986)Google Scholar
  47. 47.
    G.P.L. Walker: Phil. Trans. R. Soc. A 274, 107 (1952)ADSCrossRefGoogle Scholar
  48. 48.
    J.A. Whitehead, K.R. Helfrich: G. Geophys. Res. B3 96, 4145 (1991)ADSCrossRefGoogle Scholar
  49. 49.
    J.A. Whitehead, P. Kelemen: ‘Fluid and thermal dissolution instabilities in magmatic systems’. In: Magmatic Systems, ed. by M.P. Ryan (Academic Press, New York, 1994) pp. 355–379CrossRefGoogle Scholar
  50. 50.
    D.A. Williams, R.C. Kerr, C.M. Lesher: J. Geophys. Res. 103, 27533 (1998)CrossRefADSGoogle Scholar
  51. 51.
    J. Wylie, J.R. Lister: J. Fluid Mech. 305, 329 (1995)CrossRefGoogle Scholar
  52. 52.
    J. Wylie, K.R. Helfrich, B. Dade, J.R. Lister, J.F. Salzig: Bull. Volcanol. 60, 432 (1999)CrossRefADSGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2001

Authors and Affiliations

  • J. A. Whitehead
    • 1
  • R. W. Griffiths
    • 2
  1. 1.Woods Hole Oceanographic InstitutionWoods HoleUSA
  2. 2.Research School of Earth SciencesThe Australian National UniversityCanberraAustralia

Personalised recommendations