Advertisement

Shallow Lava Theory

  • N. J. Balmforth
  • A. S. Burbidge
  • R. V. Craster
Chapter
Part of the Lecture Notes in Physics book series (LNP, volume 582)

Abstract

In Chap. 2, we mentioned that lava was a non-Newtonian fluid, and discussed a variety of state-of-the-art constitutive laws that crudely model some of the properties of such fluids. In the current chapter, we go further in this direction and describe more developments of a theoretical model for lava flows. Lava flows have recently been the subject of a review by Griffiths [1] (see also Chap. 6). Our aim here is to illustrate the use of viscoplastic rheological models in this problem.

Keywords

Incline Plane Lava Dome Latent Heat Release Rheological Data Extrusion Rate 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    R.W. Griffiths: Ann. Rev. Fluid Mech. 32, 477 (2000)CrossRefADSGoogle Scholar
  2. 2.
    G. Hulme: Geophys. J. Roy. Astron. Soc. 39, 361 (1974)Google Scholar
  3. 3.
    S. Blake: ‘Viscoplastic models of lava domes’. In: Lava flows and domes: emplacement mechanisms and hazard implications, ed. by J.H. Fink, pp. 88–128. IAVCEI Proc. in Volcanology, vol. 2, Springer-Verlag (1990)Google Scholar
  4. 4.
    R.W. Griffiths, J.H. Fink: J. Fluid Mech. 252, 667 (1993)CrossRefADSGoogle Scholar
  5. 5.
    M.V. Stasiuk, C. Jaupart, R.S.J. Sparks: Geology 21, 335 (1993)CrossRefADSGoogle Scholar
  6. 6.
    R.W. Griffiths, J.H. Fink: J. Fluid Mech. 347, 13 (1997)CrossRefMathSciNetADSGoogle Scholar
  7. 7.
    B. Reisfeild, S.G. Bankohh, S.H. Davis: J. Appl. Phys. 70, 5258 and 5267 (1991)CrossRefADSGoogle Scholar
  8. 8.
    A. Neri: J. Volcan. Geotherm. Res. 81, 215 (1998)CrossRefADSGoogle Scholar
  9. 9.
    N.J. Balmforth, R.V. Craster: J. Fluid Mech. 422, 225 (2000)zbMATHCrossRefMathSciNetADSGoogle Scholar
  10. 10.
    N.J. Balmforth, R.V. Craster: J. Non-Newtonian Fluid Mech. 84, 65 (1999)zbMATHCrossRefGoogle Scholar
  11. 11.
    H.E. Huppert: J. Fluid Mech. 121, 43 (1982)CrossRefADSGoogle Scholar
  12. 12.
    J.F. Nye: J. Glaciology 2, 82 (1952)ADSGoogle Scholar
  13. 13.
    K.F. Liu, C.C. Mei: J. Fluid Mech. 207, 505 (1989)zbMATHCrossRefADSGoogle Scholar
  14. 14.
    I.N. Sneddon: Elements of Partial Differential Equations (McGraw-Hill 1957)Google Scholar
  15. 15.
    D.I. Osmond, R. Griffiths: J. Fluid Mech. (in press 2001)Google Scholar
  16. 16.
    J.G. Blom, R.A. Trompert, J.G. Verwer: ACM Trans. Math. Software 22, 302 (1996)zbMATHCrossRefGoogle Scholar
  17. 17.
    P. Coussot, S. Proust, C. Ancey: J. Non-Newtonian Fluid Mech. 66, 55 (1996)CrossRefGoogle Scholar
  18. 18.
    P. Coussot, S. Proust: J. Geophys. Res. 101, 25217 (1996)CrossRefADSGoogle Scholar
  19. 19.
    S.D.R. Wilson, S.L. Burgess: J. Non-Newtonian Fluid Mech. 79, 77 (1998)zbMATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2001

Authors and Affiliations

  • N. J. Balmforth
    • 1
  • A. S. Burbidge
    • 2
  • R. V. Craster
    • 3
  1. 1.Department of Applied Mathematics and Statistics, School of EngineeringUniversity of California at Santa CruzUSA
  2. 2.School of Chemical EngineeringUniversity of BirminghamEdgbaston, BirminghamUK
  3. 3.Department of MathematicsImperial College of Science, Technology and MedicineLondonUK

Personalised recommendations