The Dynamics of Snow and Ice Masses

  • J.S. Wettlaufer
Part of the Lecture Notes in Physics book series (LNP, volume 582)


On Earth today we enjoy a relatively comfortable climate, which is a fortunate consequence of the present extent of the global ice cover. Although more than two-thirds of the surface of Earth is covered by water, it is the water to ice conversion, and vice versa, that makes an important fraction of the globe habitable today. Hence, changes in the global scale dynamics of the ice cover capture scientific and public interest principally because of their role in global warming and ice-age events. It is in this sense that ice is the ultimate geomorphological fluid mechanic.


Comfortable Climate Fortunate Consequence Temperature Dependent Creep Transverse Strain Rate 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    R.B. Alley: Proc. Nat. Acad. Sci. 97, 1331 (2000)CrossRefADSGoogle Scholar
  2. 2.
    S. Anandakrishnan, D.D. Blankenship, R.B. Alley, P.L. Stoffa: Nature 394, 62 (1998)CrossRefADSGoogle Scholar
  3. 3.
    M.I. Budyko: Climate and Life (Academic Press, New York 1974)Google Scholar
  4. 4.
    A.C. Fowler: Mathematical models in the applied sciences (C. U. P., Cambridge 1997)Google Scholar
  5. 5.
    J.W. Glen: Proc. Roy. Soc. A 207, 519 (1955)CrossRefADSGoogle Scholar
  6. 6.
    J.W. Hurrell: Science 269, 676 (1995)CrossRefADSGoogle Scholar
  7. 7.
    K. Hutter: Theoretical Glaciology (D. Reidel, Dordrecht)Google Scholar
  8. 8.
    D.R. MacAyeal: Paleoceanography 8, 775 (1993)ADSCrossRefGoogle Scholar
  9. 9.
    S.J. Marshall, K.M. Cuffey: Earth Planet. Sci. Lett. 179, 73 (2000)CrossRefADSGoogle Scholar
  10. 10.
    G.A. Maykut, N. Untersteiner: J. Geophys. Res. 76, 1550 (1971)ADSCrossRefGoogle Scholar
  11. 11.
    M.G. McPhee, T.P. Stanton, J.H. Morison, D.G. Martinson: Geophys. Res. Lett. 25, 1720 (1998)CrossRefADSGoogle Scholar
  12. 12.
    J.H. Morison, K. Aagaard, M. Steele: Arctic 53, 359 (2000)Google Scholar
  13. 13.
    J.F. Nye: Proc. Roy. Soc. Lond. 207, 554 (1951)zbMATHADSCrossRefGoogle Scholar
  14. 14.
    E. Orowon: J. Glaciol. 1, 231 (1949)CrossRefGoogle Scholar
  15. 15.
    W.S.B. Paterson: The Physics of Glaciers, 3rd ed. (Pergamon, Oxford 1994)Google Scholar
  16. 16.
    J. Pedlosky: Geophysical Fluid Dynamics, 2nd ed. (Springer, New York 1987)zbMATHGoogle Scholar
  17. 17.
    A.W. Rempel, E.D. Waddington, J.S. Wettlaufer, M.G. Worster: Nature 411, 568 (2001)CrossRefADSGoogle Scholar
  18. 18.
    D.A. Rothrock, Y. Yu, G.A. Maykut: Geophys. Res. Lett. 26, 3469 (1999)CrossRefADSGoogle Scholar
  19. 19.
    B. Saltzman, H. Hu, R.J. Oglesby: Dyn. Atmos. & Oceans 27, 619 (1998)CrossRefADSGoogle Scholar
  20. 20.
    A.S. Thorndike: J. Geophys. Res. 97, 12601 (1992)ADSCrossRefGoogle Scholar
  21. 21.
    A.S. Thorndike: in Ice Physics and the Natural Environment NATO ASI, Series 1, Vol. 56 (ed. by J.S. Wettlaufer, J.G. Dash, N. Untersteiner) 169–184 (Springer-Verlag, Berlin 1999)Google Scholar
  22. 22.
    D.W.J. Thompson, J.M. Wallace: Geophys. Res. Lett. 25, 1297 (1998)CrossRefADSGoogle Scholar
  23. 23.
    J.E. Walsh, W.L. Chapman, T.L. Shy: J. Climate 9, 480 (1996)CrossRefADSGoogle Scholar
  24. 24.
    J.S. Wettlaufer: Phil. Trans. Roy. Soc. A 357, 3403 (1999)CrossRefADSGoogle Scholar
  25. 25.
    J.S. Wettlaufer, J.G. Dash: Sci. American 282, 56 (2000)CrossRefGoogle Scholar
  26. 26.
    J.S. Wettlaufer, M.G. Worster, H.E. Huppert: J. Geophys. Res. 105, 1123 (2000)CrossRefADSGoogle Scholar
  27. 27.
    J. Zhang, D.A. Rothrock, M. Steele: J. Climate 13, 3099 (2000)CrossRefADSGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2001

Authors and Affiliations

  • J.S. Wettlaufer
    • 1
  1. 1.Applied Physics Laboratory and Department of PhysicsUniversity of WashingtonSeattleUSA

Personalised recommendations