Advertisement

Dynamics and Thermodynamics of Systems with Long-Range Interactions: An Introduction

  • Thierry Dauxois
  • Stefano Ruffo
  • Ennio Arimondo
  • Martin Wilkens
Chapter
Part of the Lecture Notes in Physics book series (LNP, volume 602)

Abstract

We review theoretical results obtained recently in the framework of statistical mechanics to study systems with long-range forces. This fundamental and methodological study leads us to consider the different domains of applications in a trans-disciplinary perspective (astrophysics, nuclear physics, plasmas physics, metallic clusters, hydrodynamics,...) with a special emphasis on Bose-Einstein condensates.

The main issues discussed in this context are: non additivity, ensemble inequivalence, thermodynamic anomalies at phase transitions (e.g. negative specific heat), “convex intruders” in the entropy, non-extensive statistics and new entropies, coherent structures and self-consistent chaos, laser induced long-range interactions in cold atomic systems.

Keywords

Black Hole Thermodynamic Limit Einstein Condensate Physical Review Letter Microcanonical Ensemble 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    T. Padmanabhan: Physics Reports 188, 285 (1990)CrossRefADSMathSciNetGoogle Scholar
  2. 2.
    M. Kac, G.E. Uhlenbeck, P.C. Hemmer: J. Math. Phys. 4, 216 (1963)CrossRefADSMathSciNetGoogle Scholar
  3. 3.
    T. Dauxois, S. Ruffo, E. Arimondo, M. Wilkens: “Dynamics and Thermodynamics of Systems with Long-Range Interactions”, Lecture Notes in Physics Vol. 602, Springer (2002).Google Scholar
  4. 4.
    J. Barré, D. Mukamel, S. Ruffo: Inequivalence of ensembles in mean-field models. of magnetism in [3] (in this volume)Google Scholar
  5. 5.
    T. Padmanabhan: Statistical mechanics of gravitating systems in static and expanding. backgrounds in [3] (in this volume)Google Scholar
  6. 6.
    P.-H. Chavanis: Statistical mechanics of two-dimensional vortices and stellar systems in [3] (in this volume)Google Scholar
  7. 7.
    E. G. D. Cohen, I. Ispolatov: Phase transitions in systems with 1/r α attractive interactions in [3] (in this volume)Google Scholar
  8. 8.
    Y. Elskens: Kinetic theory for plasmas and wave-particle hamiltonian dynamics in [3] (in this volume)Google Scholar
  9. 9.
    D. Del Castillo-Negrete: Dynamics and self-consistent chaos in a mean field Hamiltonian. model in [3] (in this volume)Google Scholar
  10. 10.
    N. I. Muskhelishvili, in Some Basic Problems of the Mathematical Theory of Elasticity, P. Noordhoff, Groningen (1953)zbMATHGoogle Scholar
  11. 11.
    L. D. Landau, E. M. Lifshitz: Course of Theoretical Physics. T. 8: Electrodynamics. of continuous media (1984)Google Scholar
  12. 12.
    R. B. Griffiths: Physical Review 176, 655 (1968). M.E. Fisher, Arch. Rat. Mech. Anal. 17, 377 (1964)CrossRefADSGoogle Scholar
  13. 13.
    Ph. Chomaz, F. Gulminelli: Phase transitions in finite systems in [3] (in this volume)Google Scholar
  14. 14.
    D. H. E. Gross: Microcanonical Thermodynamics, World Scientific, Singapore (2001)CrossRefGoogle Scholar
  15. 15.
    D. H. E. Gross: Thermo-Statistics or Topology of the Microcanonical Entropy Surface in [3] (in this volume)Google Scholar
  16. 16.
    W. Thirring: Z. Phys. 235, 339 (1970)CrossRefADSGoogle Scholar
  17. 17.
    A. S. Eddington: The internal constitution of stars, Cambridge University Press (1926)Google Scholar
  18. 18.
    D. Lynden-Bell, R. Wood: Mont. Not. R. Astron. Soc. 138, 495 (1968)ADSGoogle Scholar
  19. 19.
    J.C. Maxwell: On Boltzmann’s theorem on the average distribution of energy in a. system of material points, Cambridge Philosophical Society’s Trans., vol XII, p. 90 (1876)Google Scholar
  20. 20.
    T. Poston, J. Stewart, Catastrophe Theory and its Application, Pitman, London (1978)Google Scholar
  21. 21.
    S. W. Hawking: Nature 248, 30 (1974)CrossRefADSGoogle Scholar
  22. 22.
    D’Agostino et al: Physics Letters B 473, 219 (2000)CrossRefADSGoogle Scholar
  23. 23.
    M. Schmidt et al: Physical Review Letters 86, 1191 (2001)CrossRefADSGoogle Scholar
  24. 24.
    F. Gobet et al: Physical Review Letters 87, 203401 (2001)CrossRefADSGoogle Scholar
  25. 25.
    M. Belkacem, V. Latora, A. Bonasera: Physical Review C 52, 271 (1995)CrossRefADSGoogle Scholar
  26. 26.
    C. Tsallis, A. Rapisarda, V. Latora, F. Baldovin: Nonextensivity: from lowdimensional. maps to Hamiltonian systems in [3] (in this volume)Google Scholar
  27. 27.
    C. Tsallis: Journal of Statistical Physics 52, 479 (1988)zbMATHCrossRefADSMathSciNetGoogle Scholar
  28. 28.
    C. Beck, E.G.D. Cohen, [cond-mat/0205097]Google Scholar
  29. 29.
    F. Baldovin and A. Robledo, [cond-mat/0205356].Google Scholar
  30. 30.
    A. Torcini, M. Antoni: Physical Review E 59, 2746 (1999)CrossRefADSGoogle Scholar
  31. 31.
    T. Dauxois, V. Latora, A. Rapisarda, S. Ruffo, A. Torcini: The Hamiltonian mean. field model: from dynamics to statistical mechanics and back in [3] (in this volume)Google Scholar
  32. 32.
    O. Biham, O. Malcai: Fractals and Power-Laws in [3] (in this volume)Google Scholar
  33. 33.
    M. H. Anderson et al: Science 269, 198 (1995). C. C. Bradley et al, Physical Review Letters 75, 1687 (1995). K. B. Davis et al, Physical Review Letters 75, 3669 (1995)CrossRefADSGoogle Scholar
  34. 34.
    J. Dalibard: Coherence and superfluidity of gaseous Bose-Einstein condensates in [3] (in this volume)Google Scholar
  35. 35.
    O. Morsch, E. Arimondo: Ultracold atoms and Bose-Einstein condensates in optical. lattices in [3] (in this volume)Google Scholar
  36. 36.
    D. Boers, M. Holthaus: Canonical statistics of occupation numbers for ideal and. weakly interacting Bose-Einstein condensates in [3] (in this volume)Google Scholar
  37. 37.
    U. Leonhardt: Quantum catastrophes in Proceedings of the Conference “Dynamics and thermodynamics of systems with long-range interactions”, Les Houches, France, February 18–22 2002, T. Dauxois, E. Arimondo, S. Ruffo, M. Wilkens Eds., published on http://www.ens-lyon.fr/~tdauxois/procs02/
  38. 38.
    G. Kurizki, D. O’Dell, S. Giovanazzi, A. I. Artemiev: New regimes in cold gases. via laser-induced long-range interactions in [3] (in this volume)Google Scholar
  39. 39.
    J. Barré, F. Bouchet, in preparation (2002)Google Scholar
  40. 40.
    D. O’Dell, S. Giovanazzi, G. Kurizki, V. M. Akulin: Physical Review Letters 84, 5687 (2000)CrossRefADSGoogle Scholar
  41. 41.
    R. S. Ellis, K. Haven, B. Turkington: Journal of Statistical Physics 101, 999 (2000)zbMATHCrossRefMathSciNetGoogle Scholar
  42. 42.
    A. Noullez, D. Fanelli, E. Aurell: “Heap base algorithm”, cond-mat/0101336 (2001)Google Scholar
  43. 43.
    A. C. Maggs, V. Rossetto, Physical Review Letters 88, 196402 (2002)CrossRefADSGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2002

Authors and Affiliations

  • Thierry Dauxois
    • 1
  • Stefano Ruffo
    • 2
  • Ennio Arimondo
    • 3
  • Martin Wilkens
    • 4
  1. 1.Laboratoire de Physique, UMR CNRS 5672ENS LyonLyonFrance
  2. 2.Dipartimento di Energetica “S. Stecco”Università di FirenzeFirenzeItaly
  3. 3.Dipartimento di FisicaUniversità degli Studi di PisaPisaItaly
  4. 4.Institut fuer PhysikUniversität PotsdamPotsdamGermany

Personalised recommendations