Advertisement

Canonical Statistics of Occupation Numbers for Ideal and Weakly Interacting Bose-Einstein Condensates

  • Dave Boers
  • Martin Holthaus
Chapter
  • 773 Downloads
Part of the Lecture Notes in Physics book series (LNP, volume 602)

Abstract

We give a self-contained, tutorial review of recent works on the statistics of the number of particles contained in a Bose-Einstein condensate within the canonical ensemble, both for ideal and weakly interacting Bose gases. While in the case of the ideal gas there exists a general mathematical framework for computing the fluctuation of the condensate particles in any trap, the analysis of the weakly interacting case is restricted to a homogeneous gas in the framework of the Bogoliubov theory. In particular, we present a simplified derivation of the pair characteristic function which governs the condensate statistics, first obtained by Kocharovsky, Kocharovsky, and Scully [Physical Review A 61, 053606 (2000)].

Keywords

Occupation Number Einstein Condensate Microcanonical Ensemble Excited Particle Grand Partition Function 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    For a review, see W. Ketterle, D.S. Durfee, D.M. Stamper-Kurn: ‘Making, Probing and Understanding Bose-Einstein Condensates’. In: Proceedings of the International. School of Physics “Enrico Fermi”, Course CXL, ed. by M. Inguscio, S. Stringari, and C.E. Wiemann (IOS Press, Amsterdam, 1999), pp. 67–176Google Scholar
  2. 2.
    M. Wilkens, F. Illuminati, M. Krämer: J. Phys. B 33, L779 (2000), and references thereinCrossRefADSGoogle Scholar
  3. 3.
    R.M. Ziff, G.E. Uhlenbeck, M. Kac: Phys. Rep. 32, 169 (1977)CrossRefADSMathSciNetGoogle Scholar
  4. 4.
    S. Grossmann, M. Holthaus: Phys. Rev. E 54, 3495 (1996)CrossRefADSGoogle Scholar
  5. 5.
    H.D. Politzer: Phys. Rev. A 54, 5048 (1996)CrossRefADSGoogle Scholar
  6. 6.
    C. Weiss, M. Wilkens: Opt. Express 1, 272 (1997)ADSCrossRefGoogle Scholar
  7. 7.
    P. Navez, D. Bitouk, M. Gajda, Z. Idziaszek, K. Rzażewski: Phys. Rev. Lett. 79, 1789 (1997)CrossRefADSGoogle Scholar
  8. 8.
    M. Holthaus, E. Kalinowski, K. Kirsten: Ann. Phys. (N.Y.) 270, 198 (1998)zbMATHCrossRefADSMathSciNetGoogle Scholar
  9. 9.
    M. O. Scully: Phys. Rev. Lett. 82, 3927 (1999)CrossRefADSGoogle Scholar
  10. 10.
    V.V. Kocharovsky, M.O. Scully, S.-Y. Zhu, M.S. Zubairy: Phys. Rev. A 61, 023609 (2000)CrossRefADSGoogle Scholar
  11. 11.
    S. Giorgini, L.P. Pitaevskii, S. Stringari: Phys. Rev. Lett. 80, 5040 (1998)CrossRefADSGoogle Scholar
  12. 12.
    F. Meier, W. Zwerger: Phys. Rev. A 60, 5133 (1999)CrossRefADSGoogle Scholar
  13. 13.
    V.V. Kocharovsky, Vl.V. Kocharovsky, M.O. Scully: Phys. Rev. Lett. 84, 2306 (2000)CrossRefADSGoogle Scholar
  14. 14.
    V.V. Kocharovsky, Vl.V. Kocharovsky, M.O. Scully: Phys. Rev. A 61, 053606 (2000)CrossRefADSGoogle Scholar
  15. 15.
    Z. Idziaszek, M. Gajda, P. Navez, M. Wilkens, K. Rzażewski: Phys. Rev. Lett. 82, 4376 (1999)CrossRefADSGoogle Scholar
  16. 16.
    F. Illuminati, P. Navez, M. Wilkens: J. Phys. B 32, L461 (1999)CrossRefADSGoogle Scholar
  17. 17.
    M. Holthaus, K.T. Kapale, V.V. Kocharovsky, M.O. Scully: Physica A 300, 433 (2001)zbMATHCrossRefADSMathSciNetGoogle Scholar
  18. 18.
    L.D. Landau, E.M. Lifshitz: Course of Theoretical Physics, Vol. 9: Statistical. Physics, Part 2 (Butterworth-Heinemann, Oxford, 1998)Google Scholar
  19. 19.
    L.D. Landau, E.M. Lifshitz: Course of Theoretical Physics, Vol. 5: Statistical. Physics, Part 1 (Butterworth-Heinemann, Oxford, 2001)Google Scholar
  20. 20.
    K. Huang: Statistical Mechanics (John Wiley, New York, 1963)Google Scholar
  21. 21.
    R.K. Pathria: Statistical Mechanics (Pergamon Press, Oxford, 1985)Google Scholar
  22. 22.
    M. Fierz: Helv. Phys. Acta 29, 47 (1956)zbMATHMathSciNetGoogle Scholar
  23. 23.
    Handbook of Mathematical Functions, ed. by M. Abramowitz and I.A. Stegun (Dover, New York, 1972)Google Scholar
  24. 24.
    C.W. Gardiner: Handbook of Stochastic Methods (Springer Verlag, Berlin, 1985)Google Scholar
  25. 25.
    K. Kirsten, D.J. Toms: Phys. Rev. E 59, 158 (1999)CrossRefADSGoogle Scholar
  26. 26.
    A. Voros: Commun. Math. Phys. 110, 439 (1987)zbMATHCrossRefADSMathSciNetGoogle Scholar
  27. 27.
    E.T. Whittaker, G.N. Watson: A Course of Modern Analysis (Cambridge University Press, Cambridge, 1969)Google Scholar
  28. 28.
    S.R. de Groot, G.J. Hooyman, C.A. ten Seldam: Proc. Roy. Soc. London A 203, 266 (1950)zbMATHADSCrossRefGoogle Scholar
  29. 29.
    V. Bagnato, D.E. Pritchard, D. Kleppner: Phys. Rev. A 35, 4354 (1987)CrossRefADSGoogle Scholar
  30. 30.
    M. Holthaus, K.T. Kapale, M.O. Scully: Phys. Rev. E 65, 036129 (2002)CrossRefADSGoogle Scholar
  31. 31.
    N. Bogoliubov: J. Phys. USSR 11, 23 (1947)Google Scholar
  32. 32.
    T.D. Lee, C.N. Yang: Phys. Rev. 105, 1119 (1957)CrossRefADSMathSciNetGoogle Scholar
  33. 33.
    T.D. Lee, K. Huang, C.N. Yang: Phys. Rev. 106, 1135 (1957)zbMATHCrossRefADSMathSciNetGoogle Scholar
  34. 34.
    R.A. Ferell, N. Meynhard, H. Schmidt, F. Schwabl, P. Szépfalusy: Ann. Phys. (N.Y.) 47, 565 (1968)CrossRefADSGoogle Scholar
  35. 35.
    R. Graham: Phys. Rev. Lett. 81, 5256 (1998)CrossRefADSGoogle Scholar
  36. 36.
    R. Graham: Phys. Rev. A 62, 023609 (2000)CrossRefADSGoogle Scholar
  37. 37.
    C. Weiss, M. Holthaus: Europhys. Lett., to appear (2002)Google Scholar
  38. 38.
    F.T. Arecchi, E. Courtens, R. Gilmore, H. Thomas: Phys. Rev. A 6, 2211 (1972)CrossRefADSGoogle Scholar
  39. 39.
    J. Schwinger: In Quantum Theory of Angular Momentum, ed. by L.C. Biedenharn and H. van Dam (Academic, New York, 1965)Google Scholar
  40. 40.
    B.L. Schumaker, C.M. Caves: Phys. Rev. A 31, 3093 (1985)CrossRefADSMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2002

Authors and Affiliations

  • Dave Boers
    • 1
  • Martin Holthaus
    • 1
  1. 1.Fachbereich PhysikCarl von Ossietzky UniversitätOldenburgGermany

Personalised recommendations